3 research outputs found

    The ultracool eld dwarfs luminosity function from the Canada-France Brown Dwarf Survey

    Full text link
    The Canada-France Brown Dwarf Survey is a wide eld survey for cool brown dwarfs conducted with the MegaCam camera on the CFHT telescope. Our objectives are to nd ultracool brown dwarfs and to constrain the eld brown dwarf mass function from a large and homogeneous sample of L and T dwarfs. We identify candidates in CFHT/Megacam i' and z' images and follow them up with pointed NIR imaging on several telescopes. Our survey has to date found 50 T dwarfs candidates and 170 L or late M dwarf candidates drawn from a larger sample of 1300 candidates with typical ultracool dwarfs i'-z' colours, found in 900 square degrees. We currently have completed the NIR follow-up on a large part of the survey for all candidates from the latest T dwarfs known to the late L color range. This allows us to build on a complete and well de ned sample of ultracool dwarfs to investigate the luminosity function of eld L and T dwarfs.Comment: Cool Stars XV conference. to appear in proceedings of Cool Stars XV Conferenc

    Gaia Data Release 2. Observational Hertzsprung-Russell diagrams

    Get PDF
    International audienceWe highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies
    corecore