894 research outputs found

    miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development

    Get PDF
    MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased β-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal β-cell mass and function. Selective re-expression of miR-375 in β-cells of miR-375KO mice normalizes both, α- and β-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of β-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from β-cells. Furthermore, acute and profound β-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of β-cell mass and provide in vivo evidence for release of miRNAs from pancreatic β-cells. The small contribution of β-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for β-cell function but suggests a utility for the detection of acute β-cell death for autoimmune diabetes

    Democracy Matters: Lessons from the 2015 Citizens' Assemblies on English Devolution

    Get PDF
    The Citizens’ Assembly pilots on local democracy and devolution were the first of their kind in the United Kingdom. Organised by Democracy Matters — an alliance of university researchers and civil society organisations led by Professor Matthew Flinders — and funded by the UK’s Economic and Social Research Council, the Assemblies took place in Southampton and Sheffield towards the end of 2015

    Profiling of VEGFs and VEGFRs as Prognostic Factors in Soft Tissue Sarcoma: VEGFR-3 Is an Independent Predictor of Poor Prognosis

    Get PDF
    BACKGROUND: In non-gastrointestinal stromal tumor soft tissue sarcoma (non-GIST STS) optimal treatment is surgery with wide resection margins. Vascular endothelial growth factors (VEGFs) and receptors (VEGFRs) are known to be key players in the initiation of angiogenesis and lymphangiogenesis. This study investigates the prognostic impact of VEGFs and VEGFRs in non-GIST STS with wide and non-wide resection margins. METHODS: Tumor samples from 249 patients with non-GIST STS were obtained and tissue microarrays were constructed for each specimen. Immunohistochemistry was used to evaluate the expressions of VEGF-A, -C and -D and VEGFR-1, -2 and -3. RESULTS: In the univariate analyses, VEGF-A (P=0.040) in the total material, and VEGF-A (P=0.018), VEGF-C (P=0.025) and VEGFR-3 (P=0.027) in the subgroup with wide resection margins, were significant negative prognostic indicators of disease-specific survival (DSS). In the multivariate analysis, high expression of VEGFR-3 (P=0.042, HR=1.907, 95% CI 1.024-3.549) was an independent significant negative prognostic marker for DSS among patients with wide resection margins. CONCLUSION: VEGFR-3 is a strong and independent negative prognostic marker for non-GIST STSs with wide resection margins

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales

    Get PDF
    Volcanic eruptions are unsteady multiphase phenomena, which encompass many inter-related processes across the whole range of scales from molecular and microscopic to macroscopic, synoptic and global. We provide an overview of recent advances in numerical modelling of volcanic effects, from conduit and eruption column processes to those on the Earth s climate. Conduit flow models examine ascent dynamics and multiphase processes like fragmentation, chemical reactions and mass transfer below the Earth surface. Other models simulate atmospheric dispersal of the erupted gas-particle mixture, focusing on rapid processes occurring in the jet, the lower convective regions, and pyroclastic density currents. The ascending eruption column and intrusive gravity current generated by it, as well as sedimentation and ash dispersal from those flows in the immediate environment of the volcano are examined with modular and generic models. These apply simplifications to the equations describing the system depending on the specific focus of scrutiny. The atmospheric dispersion of volcanic clouds is simulated by ash tracking models. These are inadequate for the first hours of spreading in many cases but focus on long-range prediction of ash location to prevent hazardous aircraft - ash encounters. The climate impact is investigated with global models. All processes and effects of explosive eruptions cannot be simulated by a single model, due to the complexity and hugely contrasting spatial and temporal scales involved. There is now the opportunity to establish a closer integration between different models and to develop the first comprehensive description of explosive eruptions and of their effects on the ground, in the atmosphere, and on the global climate

    Water Cycle Changes

    Get PDF
    This chapter assesses multiple lines of evidence to evaluate past, present and future changes in the global water cycle. It complements material in Chapters 2, 3 and 4 on observed and projected changes in the water cycle, and Chapters 10 and 11 on regional climate change and extreme events. The assessment includes the physical basis for water cycle changes, observed changes in the water cycle and attribution of their causes, future projections and related key uncertainties, and the potential for abrupt change. Paleoclimate evidence, observations, reanalyses and global and regional model simulations are considered. The assessment shows widespread, nonuniform human-caused alterations of the water cycle, which have been obscured by a competition between different drivers across the 20th century and that will be increasingly dominated by greenhouse gas forcing at the global scale

    Effects of habitat and land use on breeding season density of male Asian Houbara Chlamydotis macqueenii

    Get PDF
    Landscape-scale habitat and land-use influences on Asian Houbara Chlamydotis macqueenii (IUCN Vulnerable) remain unstudied, while estimating numbers of this cryptic, low-density, over-hunted species is challenging. In spring 2013, male houbara were recorded at 231 point counts, conducted twice, across a gradient of sheep density and shrub assemblages within 14,300 km² of the Kyzylkum Desert, Uzbekistan. Four sets of models related male abundance to: (1) vegetation structure (shrub height and substrate); (2) shrub assemblage; (3) shrub species composition (multidimensional scaling); (4) remote-sensed derived land-cover (GLOBCOVER, 4 variables). Each set also incorporated measures of landscape rugosity and sheep density. For each set, multi-model inference was applied to generalised linear mixed models of visit-specific counts that included important detectability covariates and point ID as a random effect. Vegetation structure received strongest support, followed by shrub species composition and shrub assemblage, with weakest support for the GLOBCOVER model set. Male houbara numbers were greater with lower mean shrub height, more gravel and flatter surfaces, but were unaffected by sheep density. Male density (mean 0.14 km-2, 95% CI, 0.12‒0.15) estimated by distance analysis differed substantially among shrub assemblages, being highest in vegetation dominated by Salsola rigida (0.22 [CI, 0.20‒0.25]), high in areas of S. arbuscula and Astragalus (0.14 [CI, 0.13‒0.16] and 0.15 [CI, 0.14‒0.17] respectively), lower (0.09 [CI, 0.08‒0.10]) in Artemisia and lowest (0.04 [CI, 0.04‒0.05]) in Calligonum. The study area was estimated to hold 1,824 males (CI: 1,645‒2,030). The spatial distribution of relative male houbara abundance, predicted from vegetation structure models, had the strongest correspondence with observed numbers in both model-calibration and the subsequent year’s data. We found no effect of pastoralism on male distribution but potential effects on nesting females are unknown. Density differences among shrub communities suggest extrapolation to estimate country- or range-wide population size must take account of vegetation composition

    Public Versus Private: Does It Matter for Water Conservation? Insights from California

    Get PDF
    This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California’s history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California’s public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private

    Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate

    Get PDF
    Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were lower. Our results show that feeding on flower tissues, containing higher concentrations of glucosinolates, provides P. brassicae with a nutritional benefit in terms of higher growth rate. This preference appears to be in contrast to published negative effects of volatile glucosinolate breakdown products on the closely related Pieris rapae

    Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores

    Get PDF
    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved
    corecore