191 research outputs found

    Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea

    Get PDF
    The effects of copper (Cu) on microorganisms have been studied for decades due to its strong antimicrobial activity. Nowadays, emerging technologies are developing new antimicrobial compounds such as CuO and Cu nanoparticles (NPs), or products with their inclusions. In this study two plant pathogenic fungi, Alternaria alternata and Botrytis cinerea, were exposed to Cu in either ionic (Cu2+) or microparticle (MP, CuO) or nanoparticle (NP, Cu or CuO) form, in solid and liquid culturing media. B. cinerea proved to be resistant to CuO and Cu NPs and CuO MPs in comparison to A. alternata as shown by pronounced growth and lower levels of lipid peroxidation. B. cinerea grown in the presence of CuO and Cu NPs and CuO MPs on solid medium formed a blue compound at the fungal/ culturing medium interface, followed by a Cu depletion zone. The blue compound was characterized as Cu-oxalate by Cu-K EXAFS. In B. cinerea, pronounced activity of catechol-type siderophores and/or organic acid secretion apparently induces leaching and mobilization of Cu ions from the CuO MPs, CuO and Cu NPs and their further complexation with extracellularly secreted oxalic acid. As such, the pathogenic fungus B. cinerea may be used for copper extraction and/or purification and synthesis of different materials

    Germination characteristics of Salicornia patula Duval-Jouve, S. emerici Duval-Jouve, and S. veneta Pign. et Lausi and their occurrence in Croatia

    Get PDF
    According to recent molecular analyses of Salicornia, we revised the annual glassworts from the Croatian coast, classified until now only as Salicornia europaea. Two species, a diploid Salicornia patula and a tetraploid S. emerici were recognized. They can be easily distinguished by floral characters, but not only by their habitus, which varies extremely according to environmental factors. Both species differ also in seed morphology. Salicornia patula has dimorphic seeds, with larger central seeds reaching high germination rates. Germination patterns helped to explain the habitat preferences. The species rarely co-occur, however. The rare S. patula occupies drier habitats, on coastal mudflats or sands that are irregularly inundated. It occurs within the assoc. Suaedo maritimae-Salicornietum patulae. Salicornia emerici occupies the lowest coastal mudflats, regularly inundated, where nutrient-rich conditions prevail, and forms an almost monotypical assoc. Salicornietum emerici. Due to the synonymy of S. veneta with S. emerici, we exclude the occurrence of S. veneta in Croatia as an independent taxon

    New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    Get PDF
    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved

    Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants

    Get PDF
    enod40 is a plant gene that participates in the regulation of symbiotic interaction between leguminous plants and bacteria or fungi. Furthermore, it has been suggested to play a general role in non-symbiotic plant development. Although enod40 seems to have multiple functions, being present in many land plants, the molecular mechanisms of its activity are unclear; they may be determined though, by short peptides and/or RNA structures encoded in the enod40 genes. We utilized conserved RNA structures in enod40 sequences to search nucleotide sequence databases and identified a number of new enod40 homologues in plant species that belong to known, but also, to yet unknown enod40-containing plant families. RNA secondary structure predictions and comparative sequence analysis of enod40 RNAs allowed us to determine the most conserved structural features, present in all known enod40 genes. Remarkably, the topology and evolution of one of the conserved structural domains are similar to those of the expansion segments found in structural RNAs such as rRNAs, RNase P and SRP RNAs. Surprisingly, the enod40 RNA structural elements are much more stronger conserved than the encoded peptides. This finding suggests that some general functions of enod40 gene could be determined by the encoded RNA structure, whereas short peptides may be responsible for more diverse functions found only in certain plant families

    Arbuscular mycorrhizal fungi (AMF) root colonization dynamics of Molinia caerulea (L.) Moench. in grasslands and post-industrial sites

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Ecological Engineering on 05/08/2016, available online: https://doi-org.ezproxy.wlv.ac.uk/10.1016/j.ecoleng.2016.06.029 The accepted version of the publication may differ from the final published version.The aims of this studies were: (i) to examine the influence of heavy metal content (Zn, Cd, Pb, Fe, Cu) and other physico-chemical soil parameters on the level of root colonization of Molinia caerulea and (ii) to relate root colonisation parameters and soil variables to Molinia caerulea abundance in two contrasting habitats (grasslands and heavy metal contaminated sites). The sites differ significantly in terms of bio-available heavy metal contents, particularly Zn (34 times more than grasslands), soil texture, CaCO3, organic matter (LOI%), Mg and nitrate content. Principal Component Analysis showed the strong negative correlations between frequency of mycorrhization (F), arbuscular abundance (A%) and intensity of root cortex colonisation (M%) and concentration of bio-available Zn and Cd. Moreover, no positive correlation between root colonization of Molinia and its abundance was found. The frequency of mycorrhization of root fragments (F%) was only slightly different between these two habitats, whereas the intensity of root cortex colonisation (M%) and relative arbuscular abundance (A%) were significantly lower (3 and 4 times respectively) on the post-industrial sites. The bioavailable Zn content in the substratum of post-industrial sites was strongly negatively correlated with species richness, Shannon diversity index and Evenness. In contrast, these relationships were not statistically significant in grasslands. Based on obtained results we could draw a model of possible relationships between root colonization of Molinia, HM content and Molinia abundance on grasslands and post-industrial sites. Bioavailable Zn content in the soil is a one of main factors influencing the Molinia community diversity. In the grasslands, lower amounts of bioavailable Zn, resulted in higher species richness (R) and species diversity (H) which in turn lead to higher root colonization. On the other hand, on the post-industrial sites, the elevated bioavailable Zn content strongly decreases the plant species richness (R) and species diversity (H) and this caused the decline in root colonization parameters. The low species richness on Zn-polluted sites allowed Molinia to reach higher abundance since the competition with other species is reduced

    Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia

    Get PDF
    The fungal root endophyte associations of 16 species from 12 families of plants endemic to the Pamir Alay Mountains of Central Asia are presented. The plants and soil samples were collected in Zeravshan and Hissar ranges within the central Pamir Alay mountain system. Colonization by arbuscular mycorrhizal fungi (AMF) was found in 15 plant species; in 8 species it was of the Arum type and in 4 of the Paris type, while 3 taxa revealed intermediate arbuscular mycorrhiza (AM) morphology. AMF colonization was found to be absent only in Matthiola integrifolia, the representative of the Brassicaceae family. The AM status and morphology are reported for the first time for all the species analyzed and for the genera Asyneuma, Clementsia, and Eremostachys. Mycelia of dark septate endophytes (DSE) accompanied the AMF colonization in ten plant species. The frequency of DSE occurrence in the roots was low in all the plants, with the exception of Spiraea baldschuanica. However, in the case of both low and higher occurrence, the percentage of DSE root colonization was low. Moreover, the sporangia of Olpidium spp. were sporadically found inside the root epidermal cells of three plant species. Seven AMF species (Glomeromycota) found in the trap cultures established with soils surrounding roots of the plants being studied were reported for the first time from this region of Asia. Our results provide information that might well be of use to the conservation and restoration programmes of these valuable plant species. The potential application of beneficial root-inhabiting fungi in active plant protection projects of rare, endemic and endangered plants is discussed

    Environmental metabarcoding reveals contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanagement site

    Get PDF
    Characterization of microbial communities in stressful conditions at a field level is rather scarce, especially when considering fungal communities from aboveground habitats. We aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated phytomanagement site by using Illumina-based sequencing, network analysis approach, and direct isolation of Hg-resistant fungal strains. The highest diversity estimated by the Shannon index was found for soil communities, which was negatively affected by soil Hg concentration. Among the significant correlations between soil operational taxonomic units (OTUs) in the co-occurrence network, 80% were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, such as members of the Thelephoraceae, thus explaining the lowest diversity found for root communities. Additionally, root communities showed the highest network connectivity index, while rarely detected OTUs from the Glomeromycetes may have a central role in the root network. Unexpectedly high richness and diversity were found for aboveground habitats, compared to the root habitat. The aboveground habitats were dominated by yeasts from the Lalaria, Davidiella, and Bensingtonia genera, not detected in belowground habitats. Leaf and stem habitats were characterized by few dominant OTUs such as those from the Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, one of the dominating OTUs, was further isolated from the leaf habitat, in addition to Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings will provide an improved point of reference for microbial research on inoculation-based programs of tailings dumps

    Microbial life in volcanic lakes

    Get PDF
    Lakes in the craters of active volcanoes and their related streams are often characterised by conditions considered extreme for life, such as high temperatures, low pH and very high concentrations of dissolved metals and minerals. Such lakes tend to be transient features whose geochemistry can change markedly over short time periods. They might also vanish completely during eruption episodes or by drainage through the crater wall or floor. These lakes and their effluent streams and springs host taxonomically and metabolically diverse microorganisms belonging in the Archaea, Bacteria, and Eucarya. In volcanic ecosystems the relation between geosphere and biosphere is particularly tight; microbial community diversity is shaped by the geochemical parameters of the lake, and by the activities of microbes interacting with the water and sediments. Sampling these lakes is often challenging, and few have even been sampled once, especially in a microbiological context. Developments in high-throughput cultivation procedures, single-cell selection techniques, and massive increases in DNA sequencing throughput, should encourage efforts to define which microbes inhabit these features and how they interact with each other and the volcano. The study of microbial communities in volcanic lake systems sheds light on possible origins of life on early Earth. Other potential outcomes include the development of microbial inocula to promote plant growth in altered or degraded soils, bioremediation of contaminated waste or land, and the discovery of enzymes or other proteins industrial or medical applications
    • 

    corecore