436 research outputs found

    Dr. Robert D. Reece interview (1) conducted on October 31, 1984 about the Boonshoft School of Medicine at Wright State University

    Get PDF
    This is the first in a series of interviews with Dr. Robert D. Reece, founding Chairman of the Department of Medicine in Society in the Wright State School of Medicine. In this first interview, Dr. Reece discusses the early development of the department and how it impacts the medical student. In the first part of the interview Dr. Reece discusses his education and background prior to coming to Wright State University. He also recalls the discussions leading to the establishment of the Department of Medicine in Society within the School of Medicine. Dr. Reece then examines the development of the department, focusing on his priorities of curriculum and staff development. In the second part of the interview Dr. Reece discusses the curriculum of the department and how the department impacts the medical student. Elements of the curriculum discussed in detail are: the core courses of the department; the department\u27s selectives; and department participation in correlation sessions and grand rounds

    Detection of Panulirus Argus Virus 1 (PaV1) in the Caribbean Spiny Lobster Using Fluorescence in situ Hybridization (FISH)

    Get PDF
    Panulirus argus Virus 1 (PaV1) is the first virus known to be pathogenic to a wild lobster. It infects the Caribbean spiny lobster P. argus from the Florida Keys, and has a predilection for juveniles. The monitoring of the virus in wild populations and study of its behavior in the laboratory require the development of reliable diagnostic tools. A sensitive and specific fluorescence in situ hybridization (FISH) assay was developed for detection of PaV1. The lower detection limit using a 110 bp DNA probe in a dot-blot hybridization for PaV1 DNA was 10 pg of cloned template PaV1 DNA and 10 ng of genomic DNA extracted from the hemolymph of diseased spiny lobster. The fluorescein (FITC)-labeled probe specifically hybridized to PaV1-infected cells in the hepatopancreas, hindgut, gills, heart, foregut, and nerve tissues. FITC staining was observed around the inner periphery of the nuclear membrane, with lighter staining in a more dispersed pattern within the nucleus. The probe did not hybridize with host tissues of uninfected spiny lobsters, nor did it cross-react with 4 other virus samples tested. This assay will facilitate our understanding of the pathogenesis of the viral disease and help in monitoring efforts directed at determining the prevalence of PaV1 in juvenile nurseries for this lobster

    Detection of Panulirus argus Virus 1 (PaV1) in the Caribbean spiny lobster using fluorescence in situ hybridization (FISH)

    Get PDF
    Panulirus argus Virus 1 (PaV1) is the first virus known to be pathogenic to a wild lobster. It infects the Caribbean spiny lobster P. argus from the Florida Keys, and has a predilection for juveniles. The monitoring of the virus in wild populations and study of its behavior in the laboratory require the development of reliable diagnostic tools. A sensitive and specific fluorescence in situ hybridization (FISH) assay was developed for detection of PaV1. The lower detection limit using a 110 bp DNA probe in a dot-blot hybridization for PaV1 DNA was 10 pg of cloned template PaV1 DNA and 10 ng of genomic DNA extracted from the hemolymph of diseased spiny lobster. The fluorescein (FITC)-labeled probe specifically hybridized to PaV1-infected cells in the hepatopancreas, hindgut, gills, heart, foregut, and nerve tissues. FITC staining was observed around the inner periphery of the nuclear membrane, with lighter staining in a more dispersed pattern within the nucleus. The probe did not hybridize with host tissues of uninfected spiny lobsters, nor did it cross-react with 4 other virus samples tested. This assay will facilitate our understanding of the pathogenesis of the viral disease and help in monitoring efforts directed at determining the prevalence of PaV1 in juvenile nurseries for this lobster

    Examining sustainability in a hospital setting: Case of smoking cessation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ottawa Model of Smoking Cessation (OMSC) is a hospital-based smoking cessation program that is expanding across Canada. While the short-term effectiveness of hospital cessation programs has been documented, less is known about long-term sustainability. The purpose of this exploratory study was to understand how hospitals using the OMSC were addressing sustainability and determine if there were critical factors or issues that should be addressed as the program expanded.</p> <p>Methods</p> <p>Six hospitals that differed on OMSC program activities (identify and document smokers, advise quitting, provide medication, and offer follow-up) were intentionally selected, and two key informants per hospital were interviewed using a semi-structured interview guide. Key informants were asked to reflect on the initial decision to implement the OMSC, the current implementation process, and perceived sustainability of the program. Qualitative analysis of the interview transcripts was conducted and themes related to problem definition, stakeholder influence, and program features emerged.</p> <p>Results</p> <p>Sustainability was operationalized as higher performance of OMSC activities than at baseline. Factors identified in the literature as important for sustainability, such as program design, differences in implementation, organizational characteristics, and the community environment did not explain differences in program sustainability. Instead, key informants identified factors that reflected the interaction between how the health problem was defined by stakeholders, how priorities and concerns were addressed, features of the program itself, and fit within the hospital context and resources as being influential to the sustainability of the program.</p> <p>Conclusions</p> <p>Applying a sustainability model to a hospital smoking cessation program allowed for an examination of how decisions made during implementation may impact sustainability. Examining these factors during implementation may provide insight into issues affecting program sustainability, and foster development of a sustainability plan. Based on this study, we suggest that sustainability plans should focus on enhancing interactions between the health problem, program features, and stakeholder influence.</p

    Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the multiple drug resistance protein 1 (MRP1) and P-glycoprotein 1 (MDR1) genes modulate their ability to mediate drug resistance. We therefore sought to retrospectively evaluate their influence on outcomes in relapsed and/or refractory myeloma patients treated with bortezomib or bortezomib with pegylated liposomal doxorubicin (PLD). The MRP1/R723Q polymorphism was found in five subjects among the 279 patient study population, all of whom received PLD + bortezomib. Its presence was associated with a longer time to progression (TTP; median 330 vs. 129 days; p = 0.0008), progression-free survival (PFS; median 338 vs. 129 days; p = 0.0006), and overall survival (p = 0.0045). MDR1/3435(C > T), which was in Hardy–Weinberg equilibrium, showed a trend of association with PFS (p = 0.0578), response rate (p = 0.0782) and TTP (p = 0.0923) in PLD + bortezomib patients, though no correlation was found in the bortezomib arm. In a recessive genetic model, MDR1/3435 T was significantly associated with a better TTP (p = 0.0405) and PFS (p = 0.0186) in PLD + bortezomib patients. These findings suggest a potential role for MRP1 and MDR1 SNPs in modulating the long-term outcome of relapsed and/or refractory myeloma patients treated with PLD + bortezomib. Moreover, they support prospective studies to determine if such data could be used to tailor therapy to the genetic makeup of individual patients

    Synthetic Toll Like Receptor-4 (TLR-4) Agonist Peptides as a Novel Class of Adjuvants

    Get PDF
    Background: Adjuvants serve as catalysts of the innate immune response by initiating a localized site of inflammation that is mitigated by the interactions between antigens and toll like receptor (TLR) proteins. Currently, the majority of vaccines are formulated with aluminum based adjuvants, which are associated with various side effects. In an effort to develop a new class of adjuvants, agonists of TLR proteins, such as bacterial products, would be natural candidates. Lipopolysaccharide (LPS), a major structural component of gram negative bacteria cell walls, induces the systemic inflammation observed in septic shock by interacting with TLR-4. The use of synthetic peptides of LPS or TLR-4 agonists, which mimic the interaction between TLR-4 and LPS, can potentially regulate cellular signal transduction pathways such that a localized inflammatory response is achieved similar to that generated by adjuvants. Methodology/Principal Findings: We report the identification and activity of several peptides isolated using phage display combinatorial peptide technology, which functionally mimicked LPS. The activity of the LPS-TLR-4 interaction was assessed by NF-kB nuclear translocation analyses in HEK-BLUE TM-4 cells, a cell culture model that expresses only TLR-4, and the murine macrophage cell line, RAW264.7. Furthermore, the LPS peptide mimics were capable of inducing inflammatory cytokine secretion from RAW264.7 cells. Lastly, ELISA analysis of serum from vaccinated BALB/c mice revealed that the LPS peptide mimics act as a functional adjuvant

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Timing of immune escape linked to success or failure of vaccination

    Get PDF
    Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated na&iuml;ve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of na&iuml;ve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.<br /

    Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites

    Get PDF
    Background Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Presentation of the hypothesis Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Testing the hypothesis Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Implications of the hypothesis Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat

    Elotuzumab, lenalidomide, and dexamethasone in RRMM: final overall survival results from the phase 3 randomized ELOQUENT-2 study

    Get PDF
    Prolonging overall survival (OS) remains an unmet need in relapsed or refractory multiple myeloma (RRMM). In ELOQUENT-2 (NCT01239797), elotuzumab plus lenalidomide/dexamethasone (ERd) significantly improved progression-free survival (PFS) versus lenalidomide/dexamethasone (Rd) in patients with RRMM and 1–3 prior lines of therapy (LoTs). We report results from the pre-planned final OS analysis after a minimum follow-up of 70.6 months, the longest reported for an antibody-based triplet in RRMM. Overall, 646 patients with RRMM and 1–3 prior LoTs were randomized 1:1 to ERd or Rd. PFS and overall response rate were co-primary endpoints. OS was a key secondary endpoint, with the final analysis planned after 427 deaths. ERd demonstrated a statistically significant 8.7-month improvement in OS versus Rd (median, 48.3 vs 39.6 months; hazard ratio, 0.82 [95.4% Cl, 0.68–1.00]; P = 0.0408 [less than allotted α of 0.046]), which was consistently observed across key predefined subgroups. No additional safety signals with ERd at extended follow-up were reported. ERd is the first antibody-based triplet regimen shown to significantly prolong OS in patients with RRMM and 1–3 prior LoTs. The magnitude of OS benefit was greatest among patients with adverse prognostic factors, including older age, ISS stage III, IMWG high-risk disease, and 2–3 prior LoTs
    corecore