191 research outputs found
Full field investigation of salt deformation at room temperature: cooperation of crystal plasticity and grain sliding
International audienceWe observed with optical and scanning electron microscopy halite samples during uniaxial compression. Surface displacement fields were retrieved from digital images taken at different loading stages thanks to digital image correlation (DIC) techniques, on the basis of which we could 1) compute global and local strain fields, 2) identify two co-operational deformation mechanisms. The latter were 1) crystal slip plasticity (CSP), as evidenced by the occurrence of slip lines and computed discrete intracrystalline slip bands at the grain surfaces, 2) interfacial micro-cracking and grain boundary sliding (GBS), as evidenced by the computed relative interfacial displacements. The heterogeneities of the strain fields at the aggregate and at the grain scale, and the local contributions of each mechanism were clearly related to the microstructure, i.e. the relative crystallographic orientations of neighboring grains and the interfacial orientations with respect to the principal stress
Multi-scale viscoplastic behaviour of Halite: In-situ SEM full field measurements, a micro-mechanical approach
Halite geological formations are already extensively used for underground storage of hydrocarbons. For example, the entire USA federal reserve of petrol resides in deep (500 - 1000 m) artificial salt caverns, which are realized by controlled dissolution. In France, many such salt caverns are used for storage of natural gas by GDF. Salt caverns and carries are also intended to become nuclear waste repositories. At this point, salt caverns are also seriously envisaged for the daily storage of energy from renewable, but intermittent sources (photovoltaic, Aeolian), under the form of compressed air. Halite mechanical behaviour was extensively studied for the purpose of safe geothechnical applications. Halite is a ductile type rock. Its differed (time-dependent) mechanical response dominates by far, and therefore deep salt caverns experience convergence (closure), which may result in catastrophic subsidence of the overlaying geological layers. Hence, a particular attention was drawn to characterize salt single crystal creep properties (active slip systems and critical resolved shear stresses), and the rheology of poly-crystalline salt, at various temperatures, pressures, differential stresses and water contents (Ter Heege et al., 2007). But, most studies were concerned with macroscopically derived flow laws, corresponding to rather high differential stresses (as compared with those experienced on site), where crystal slip plasticity (CSP) dominates. But, many studies have also shown that halite is very sensitive to solution-precipitation creep (SPC) mechanisms, which may result in solution transfer accommodated grain boundary sliding (GBS). Conversely, some recent studies report that halite is able to flow at ambient conditions, and under very small loads, with strain rates much faster (four orders of magnitude) than those extrapolated from high stress experiments (Bérest et al., 2005). Though, the specific creep micro-mechanisms were not identified, Bérest et al. (2005) invoked possible SPC. Additionally, the effects on long term behaviour of cyclic loading (fatigue) are still poorly known. It is therefore still questionable weather it is really possible to safely extrapolate the laboratory data to the long term envisaged geotechnical applications. To answer we need i) additional experimental work in order to up date the deformation mechanism maps on the basis of better identified micro-physical mechanisms and quantification of their respective activity; and ii) numerical modelling at the scales of the material, and of the underground storage structures, in respect with the appropriated thermo-hygro-mechaniclal loadings. In the present work, we present our preliminary investigation of viscoplastic global and local responses of synthetic fine grained (50 - 500 m) halite by the means of full field measurements (FFM) of local strain by digital image correlation (DIC) during simple compression in-situ SEM (Doumalain et al., 2003). Figure 1 shows a typical loading curve obtained incrementally at the constant strain rate of c.a. 5x10-5 s-1. CSP evidenced by the development of slip lines on the free grain surfaces, and characterized by quasi-linear strain hardening, dominates the overall response up to several % of strain (microfracturing did not appear before 8 % strain). Yet, at the scale of the microstructure, the development of viscoplastic strain is heterogeneous, as shown by the strain maps obtained by DIC and corresponding to four incremental stages of the loading sequence. The heterogeneity of the strain field relates to the loading boundary conditions and to the local microstructure, such crystal size and orientation (which is characterized by electron back scattering diffraction, EBSD). Such micromechanical approach aims to provide the basis for the development of FE (finite element) computational CSP of polycrystalline halite
Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations
We use a physically-based crystal plasticity model to predict the yield
strength of body-centered cubic (bcc) tungsten single crystals subjected to
uniaxial loading. Our model captures the thermally-activated character of screw
dislocation motion and full non-Schmid effects, both of which are known to play
a critical role in bcc plasticity. The model uses atomistic calculations as the
sole source of constitutive information, with no parameter fitting of any kind
to experimental data. Our results are in excellent agreement with experimental
measurements of the yield stress as a function of temperature for a number of
loading orientations. The validated methodology is then employed to calculate
the temperature and strain-rate dependence of the yield strength for 231
crystallographic orientations within the standard stereographic triangle. We
extract the strain-rate sensitivity of W crystals at different temperatures,
and finish with the calculation of yield surfaces under biaxial loading
conditions that can be used to define effective yield criteria for engineering
design models
Liens entre comportement multiéchelle et mécanismes locaux de la déformation à haute température et pression de silicates biphasés représentatifs de la croûte terrestre inférieure
Le comportement rhéologique à haute
            température d’agrégats silicatés bi-phasés a été étudié expérimentalement (essais
            triaxiaux et torsion à haute température et pression). Des observations au microscope à
            transmission et à balayage ont mis en évidence des microstructures liées à l’histoire
            locale de déformation. Par des calculs aux éléments finis à l’échelle de quelques grains
            nous cherchons à comprendre et valider la séquence de mécanismes actifs et leurs liens
            avec le comportement global
Evolution of Microstructure and Texture during Warm Rolling Of a Duplex Steel
The effect of warm rolling on the evolution of microstructure and texture in a duplex stainless steel (DSS) was investigated. For this purpose, a DSS steel was warm rolled up to 90 pct reduction in thickness at 498 K, 698 K, and 898 K (225 °C, 425 °C, and 625 °C). The microstructure with an alternate arrangement of deformed ferrite and austenite bands was observed after warm rolling; however, the microstructure after 90 pct warm rolling at 498 K and 898 K (225 °C and 625 °C) was more lamellar and uniform as compared to the rather fragmented and inhomogeneous structure observed after 90 pct warm rolling at 698 K (425 °C). The texture of ferrite in warm-rolled DSS was characterized by the presence of the RD (〈011〉//RD) and ND (〈111〉//ND) fibers. However, the texture of ferrite in DSS warm rolled at 698 K (425 °C) was distinctly different having much higher fraction of the RD-fiber components than that of the ND-fiber components. The texture and microstructural differences in ferrite in DSS warm rolled at different temperatures could be explained by the interaction of carbon atoms with dislocations. In contrast, the austenite in DSS warm rolled at different temperatures consistently showed pure metal- or copper-type deformation texture which was attributed to the increase in stacking fault energy at the warm-rolling temperatures. It was concluded that the evolution of microstructure and texture of the two constituent phases in DSS was greatly affected by the temperature of warm rolling, but not significantly by the presence of the other phas
Etude expérimentale du comportement viscoplastique d'un polycristal de sel-gemme synthétique.
Nous présentons les résultats expérimentaux à différentes échelles obtenus sur un polycristal de NaCl synthétique : essais de compression uniaxiale, couplés à des mesures de champs cinématiques, obtenus par corrélation d'images numériques acquises in-situ, sous MEB. Différents mécanismes de déformation plastique sont observés, glissement intracristallin mais aussi glissement aux interfaces. Une étude 3D par tomographie RX complète les mesures de surface
Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strength
Understanding and improving the mechanical properties of tungsten is a critical task for the materials fusion energy program. The plastic behavior in body-centered cubic (bcc) metals like tungsten is governed primarily by screw dislocations on the atomic scale and by ensembles and interactions of dislocations at larger scales. Modeling this behavior requires the application of methods capable of resolving each relevant scale. At the small scale, atomistic methods are used to study single dislocation properties, while at the coarse-scale, continuum models are used to cover the interactions between dislocations. In this work we present a multiscale model that comprises atomistic, kinetic Monte Carlo (kMC) and continuum-level crystal plasticity (CP) calculations. The function relating dislocation velocity to applied stress and temperature is obtained from the kMC model and it is used as the main source of constitutive information into a dislocation-based CP framework. The complete model is used to perform material point simulations of single-crystal tungsten strength. We explore the entire crystallographic orientation space of the standard triangle. Non-Schmid effects are inlcuded in the model by considering the twinning-antitwinning (T/AT) asymmetry in the kMC calculations. We consider the importance of ?111?{110} and 111 {112} slip systems in the homologous temperature range from 0.08Tm to 0.33Tm, where Tm =3680 K is the melting point in tungsten.</p
Numerical simulation of tensile tests of prestrained sheets
The effect of cross section variation on formability of prestrained samples has been investigated using finite element simulations of a standard sheet tensile test. The mechanical model takes into account large elastoplastic strains and rotations that occur during deformation. Hill's orthotropic yield criterion with isotropic hardening describes the anisotropic plastic properties of the sheet. The isotropic hardening is modelled by a modified Swift law that describes the response of prestrained materials in reloading. Two different situations were simulated: reloading in tension of samples with constant cross sectional area and reloading in tension of samples with two zones of slightly different cross sectional areas. The results show that the strain distribution along the tensile axis of a prestrained sample depends on the level of the prestrain and also on the presence and size of geometrical fluctuations in the cross section, which always occur in experimental samples. This dependence is higher for materials with lower work-hardening rates.http://www.sciencedirect.com/science/article/B6TXD-3W6F4W3-D/1/b0ee20cd6d1b35fcfc8bda63d6c9f67
- …
