10 research outputs found

    Untangling the complex interactions between turtle ants and their microbial partners

    Get PDF
    Background: To understand the patterns of biodiversity it is important to consider symbiotic interactions as they can shape animal evolution. In several ant genera symbiotic interactions with microbial communities have been shown to have profound impacts for the host. For example, we know that for Camponotini the gut community can upgrade the host\u27s diet and is shaped by development and colony interactions. However, what is true for one ant group may not be true for another. For the microbial communities that have been examined across ants we see variation in the diversity, host factors that structure these communities, and the function these microbes provide for the host. In the herbivorous turtle ants (Cephalotes) their stable symbiotic interactions with gut bacteria have persisted for 50 million years with the gut bacteria synthesizing essential amino acids that are used by the host. Although we know the function for some of these turtle ant-associated bacteria there are still many open questions.Results: In the present study we examined microbial community diversity (16S rRNA and 18S rRNA amplicons) of more than 75 species of turtle ants across different geographic locations and in the context of the host\u27s phylogenetic history. Our results show (1) that belonging to a certain species and biogeographic regions are relevant to structuring the microbial community of turtle ants; (2) both bacterial and eukaryotic communities demonstrated correlations and cooccurrence within the ant host; (3) within the core bacterial community, Burkholderiaceae bacterial lineage were the only group that showed strong patterns of codiversification with the host, which is remarkable since the core bacterial community is stable and persistent.Conclusions: We concluded that for the turtle ants there is a diverse and evolutionarily stable core bacterial community, which leads to interesting questions about what microbial or host factors influence when these partner histories become evolutionarily intertwined

    Investigating the Diversity of Wolbachia across the Spiny Ants (Polyrhachis)

    Get PDF
    Among insects, Wolbachia is an exceedingly common bacterial endosymbiont with a range of consequences of infection. Despite the frequency of Wolbachia infection, very little is known about this bacteria\u27s diversity and role within hosts, especially within ant hosts. In this study, we analyze the occurrence and diversity of Wolbachia across the spiny ants (Polyrhachis), a large and geographically diverse genus. Polyrhachis samples from throughout the host genus\u27 phylogenetic and biogeographical range were first screened for single infections of Wolbachia using the wsp gene and Sanger sequencing. The multilocus sequence typing (MLST) scheme was then used on these singly infected samples to identify the Wolbachia strains. A Wolbachia phylogeny was inferred from the Polyrhachis samples analyzed in this study as well as other Formicidae MLST profiles from the MLST online database. We hypothesized that three key host factors were impacting Wolbachia diversity within the Polyrhachis genus: biogeography, phylogeny, and species level. The results suggest that the phylogeny and biogeography of Polyrhachis hosts have no impact on Wolbachia diversity; however, species level may have some limited influence. Additionally, Wolbachia strains appear to group according to being either Old World or New World strains. Among the taxa able to form complete MLST allelic profiles, all twenty are seemingly new strains

    The Facet of Human Impact: Solenopsis invicta Buren, 1972 Spreading around the Atlantic Forest

    Get PDF
    The present investigation deals with some aspects of the diversity of fire ants (Hymenoptera: Formicidae) in their native range. The Red Imported Fire Ant Solenopsis invicta is native to the tropical and subtropical inland territories of South America. In Brazil, it mainly occurs around the Pantanal region and across the Paraguay river, a region composed of grasslands which are seasonally flooded. Recent studies have evidenced this fire ant species is gradually spreading to other regions of Brazil. In the present investigation, we surveyed the molecular diversity of S. invicta populations across fragments of Atlantic Forest in Sao Paulo, Brazil, using mtDNA COI haplotypes. Fire ant nests were sampled along the highways lining the northern and southern slope sides of the mountain range Serra do Mar, SP, Brazil. Four haplotypes were identified (H1-H4), which were assessed for similarity to deposited records by other authors, revealing that the haplotypes H1 and H2 are likely of foreign origin through recent reintroduction via a marine port to the south of the Serra do Mar mountain range. On the other hand, the haplotypes H3 and H4, predominating among the inland samples from the northern side of the mountain range, were most similar to previous records from more central regions of Brazil. Haplotypes clustered into distinct supergroups, further pointing to the occurrence of two separate expansion waves of S. invicta in the region. We suggest the obtained pattern indicates the mountain range may function as a geographical barrier deferring gene flow

    The Evolution and Biogeography of Wolbachia in Ants (Hymenoptera: Formicidae)

    No full text
    Wolbachia bacteria are widely distributed across invertebrate taxa, including ants, but several aspects of this host-associated interaction are still poorly explored, especially with regard to the ancestral state association, origin, and dispersion patterns of this bacterium. Therefore, in this study, we explored the association of Wolbachia with Formicidae in an evolutionary context. Our data suggest that supergroup F is the ancestral character state for Wolbachia infection in ants, and there is only one transition to supergroup A, and once ants acquired infection with supergroup A, there have been no other strains introduced. Our data also reveal that the origin of Wolbachia in ants likely originated in Asia and spread to the Americas, and then back to Asia. Understanding the processes and mechanisms of dispersion of these bacteria in Formicidae is a crucial step to advance the knowledge of this symbiosis and their implications in an evolutionary context

    The Diversity of <i>Wolbachia</i> across the Turtle Ants (Formicidae: <i>Cephalotes</i> spp.)

    No full text
    Wolbachia is a widespread and well-known bacterium that can induce a wide range of changes within its host. Ants specifically harbor a great deal of Wolbachia diversity and are useful systems to study endosymbiosis. The turtle ants (Cephalotes) are a widespread group of tropical ants that rely on gut microbes to support their herbivorous diet for their survival, yet little is known of the extent of this diversity. Therefore, studying their endosymbionts and categorizing the diversity of bacteria within Cephalotes hosts could help to delimit species and identify new strains and can help lead to a further understanding of how the microbiome leads to survival and speciation in the wild. In our study, 116 individual samples were initially tested for positive infection with the wsp gene. Of the initial 116 samples, 9 samples were infected with only one strain of Wolbachia, and 7 were able to be used successfully for multilocus sequence typing (MLST). We used the new MLST data to infer a phylogeny with other Formicidae samples from the MLST online database to identify new Wolbachia strains and related genes, of which only one came back as an exact match. The 18 Wolbachia-positive samples ranged across 15 different species and 7 different countries, which we further test for species identity and geographic correlation. This study is the first comprehensive look into the diversity of Wolbachia in the turtle ants, providing insight into how endosymbionts are oriented in widespread species and providing a strong foundation for further research in host-microbe interactions

    The Facet of Human Impact: Solenopsis invicta Buren, 1972 Spreading around the Atlantic Forest

    No full text
    The present investigation deals with some aspects of the diversity of fire ants (Hymenoptera: Formicidae) in their native range. The Red Imported Fire Ant Solenopsis invicta is native to the tropical and subtropical inland territories of South America. In Brazil, it mainly occurs around the Pantanal region and across the Paraguay river, a region composed of grasslands which are seasonally flooded. Recent studies have evidenced this fire ant species is gradually spreading to other regions of Brazil. In the present investigation, we surveyed the molecular diversity of S. invicta populations across fragments of Atlantic Forest in S&atilde;o Paulo, Brazil, using mtDNA COI haplotypes. Fire ant nests were sampled along the highways lining the northern and southern slope sides of the mountain range Serra do Mar, SP, Brazil. Four haplotypes were identified (H1&ndash;H4), which were assessed for similarity to deposited records by other authors, revealing that the haplotypes H1 and H2 are likely of foreign origin through recent reintroduction via a marine port to the south of the Serra do Mar mountain range. On the other hand, the haplotypes H3 and H4, predominating among the inland samples from the northern side of the mountain range, were most similar to previous records from more central regions of Brazil. Haplotypes clustered into distinct supergroups, further pointing to the occurrence of two separate expansion waves of S. invicta in the region. We suggest the obtained pattern indicates the mountain range may function as a geographical barrier deferring gene flow

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore