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between turtle ants and their microbial partners
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Abstract 

Background: To understand the patterns of biodiversity it is important to consider symbiotic interactions as they can 
shape animal evolution. In several ant genera symbiotic interactions with microbial communities have been shown 
to have profound impacts for the host. For example, we know that for Camponotini the gut community can upgrade 
the host’s diet and is shaped by development and colony interactions. However, what is true for one ant group may 
not be true for another. For the microbial communities that have been examined across ants we see variation in the 
diversity, host factors that structure these communities, and the function these microbes provide for the host. In the 
herbivorous turtle ants (Cephalotes) their stable symbiotic interactions with gut bacteria have persisted for 50 million 
years with the gut bacteria synthesizing essential amino acids that are used by the host. Although we know the func-
tion for some of these turtle ant-associated bacteria there are still many open questions.

Results: In the present study we examined microbial community diversity (16S rRNA and 18S rRNA amplicons) of 
more than 75 species of turtle ants across different geographic locations and in the context of the host’s phylogenetic 
history. Our results show (1) that belonging to a certain species and biogeographic regions are relevant to structuring 
the microbial community of turtle ants; (2) both bacterial and eukaryotic communities demonstrated correlations and 
cooccurrence within the ant host; (3) within the core bacterial community, Burkholderiaceae bacterial lineage were 
the only group that showed strong patterns of codiversification with the host, which is remarkable since the core 
bacterial community is stable and persistent.

Conclusions: We concluded that for the turtle ants there is a diverse and evolutionarily stable core bacterial commu-
nity, which leads to interesting questions about what microbial or host factors influence when these partner histories 
become evolutionarily intertwined.

Keywords: Next-generation sequencing, Symbiont, Host-associated bacteria, Microbe

Background
To fully understand global biodiversity, we must focus 
studies on hyper-diverse groups such as arthropods, 
fungi, and microbes, which have a very large number 
of species and disproportionately fewer scientific stud-
ies compared to charismatic megafauna [1]. Therefore, 
unraveling the diversity and distribution of microbial 

symbionts among insects is fundamental to understand-
ing the biology and evolutionary history of the most 
diverse animal group on the planet. Among insects, ants 
are species rich and ecologically dominant in almost 
every terrestrial habitat [2]. Their evolutionary histo-
ries of more than 150 million years have been shaped by 
interactions with their microbial partners [3, 4], which 
have facilitated their dominance in several niches, such 
as the canopy of tropical forests [5, 6].

Previous studies have shown that ants engage in vari-
ous symbiotic interactions with fungi [7, 8], other insects 
[9, 10] and also bacteria [4, 11, 12]. Focusing specifically 
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on bacteria, many studies have shown that several species 
of ants rely on a diverse and functional symbiont com-
munity [4, 11, 13–17]. However, not all ant species rely 
on functional bacterial communities, i.e. Crematogaster 
[See 18].

Still, ants are a great system for examining interactions 
with their microbial communities, as they are eusocial 
insects, thus providing an ideal scenario to facilitate bac-
terial transfer between individuals from the same colony 
[19]. In addition, they also exhibit a variety of behaviors 
and ecologies that may predict the diversity of microbial 
communities. For example, several studies have shown 
the importance of the bacterial community in herbivo-
rous ants and how they even exhibit changes in their 
intestinal morphology to house these microbial partners 
[4, 20–24]. Although ants with omnivorous and preda-
tory habits tend to harbor fewer microbial partners [6, 
18], they may still rely on bacterial communities ([15, 
16, 25]. There are also species of ants that harbor more 
transient microbial partners, as is the case of species in 
the genus Pheidole [17] and Atta sexdens [26, 27]. Stud-
ies that explore diet preference and other ant behaviors 
and ecologies that may predict bacterial associations on 
a broad scale taking into account evolutionary time are 
still scarce (but see [4, 11, 28]) unlike in mammals and 
birds [29].

To date, few studies have explicitly examined ant 
microbial communities and their potential for codiversi-
fication with their ant hosts [15, 30–33] and turtle ants 
are a group that offer an excellent opportunity to explore 
this topic, as they harbor a diverse core bacterial com-
munity in their gut that has been diversifying with the 
host for about 50 million years [4, 31, 33–35]. Although 
the diet of the genus Cephalotes is not fully known, it is 
believed that their diet is primarily herbivorous, includ-
ing sap, pollen, insect honeydew and extrafloral nectar [5, 
36–38]. Turtle ants also feed on bird and mammal excre-
ment for nutritional supplementation [39–42]. These 
bacterial communities have been shown to upgrade the 
diet of these hosts through the recycling of nutrients [35], 
which can also contribute to the thickness and formation 
of their exoskeleton [43].

Previous studies have shown that turtle ant bacterial 
communities can be structured between different colo-
nies within the same species [34], and also within dif-
ferent gut compartments within species [14, 33, 44]. In 
addition, using 454 pyrosequencing, Sanders and col-
laborators [31] were able to identify the potential role of 
host phylogeny in structuring the entire intestinal bac-
terial community (16S rRNA) of 25 Cephalotes species. 
However, with an increased scale of sampling, the inclu-
sion of a host phylogenetic tree with greater resolution 
generated through a reduced representation genome 

sequencing approach [45], and the continuous techno-
logical advances to both sample and analyze microbial 
communities this may provide us with greater insights 
into host specificity and the evolutionary histories of 
symbiotic microbes. Furthermore, as each bacterial lin-
eage has an independent and complex history of how it 
was acquired by the host, studies that aim to understand 
each of these processes of acquisition of each bacterial 
lineage separately is crucial.

Therefore, with this study we intend to explore three 
questions in the diverse turtle ant microbiome: (1) What 
ecological factors structure the microbial communities 
of Cephalotes? (2) Are the bacterial and eukaryotic com-
munities associated with turtle ants interacting? (3) Is the 
core bacterial community, which is stable and functional 
for the host codiversifying with the host when each bac-
terial lineage is analyzed independently? To achieve these 
goals, we used multiplex Illumina sequencing of 16S 
rRNA and 18S rRNA amplicons for more than 75 spe-
cies of Cephalotes collected across the host’s geographic 
range. Our study provides new insights into this complex 
symbiotic interaction that turtle ants and their microbi-
omes have engaged for more than 50 million years.

Results
In the present study we investigated microbial commu-
nity diversity (bacterial with 16S rRNA and eukaryotic 
with 18S rRNA amplicons) of more than 75 species of 
turtle ants across their geographic range and in the con-
text of the host’s phylogenetic history. Our bacterial 16S 
rRNA preliminary results found differences between 
pinned museum samples using a noninvasive method 
of DNA extraction (see Additional file  1) and for this 
reason these samples were excluded from subsequent 
analyses suggesting that pinned museum collections 
may not be appropriate for assessing insect-associated 
microbial communities. However, we did not find dif-
ferences between samples of only the gaster/abdomen 
compared with the whole worker (Pseudo-F = 1.081, p 
value = 0.307) as previously found by Flynn et  al. [33]. 
Our results also found no differences between the two 
different kits used in the present study (Pseudo-F = 1.068, 
p value = 0.322), so we kept samples from both in our 
library. After these initial filtrations and removing sam-
ples, our library contained 151 samples with 5,137,726 
reads, varying with a maximum of 73,287 reads and a 
minimum of 2525 reads in the samples. Using BugBase, 
our data recovered more aerobic phenotypes than anaer-
obic in the 16S rRNA library (Additional file  2), which 
suggest turtle ant digestive tracts provide conditions that 
favor a certain type of bacteria.

Bacterial quantification (16S rRNA) was performed 
by qPCR and our results found significant differences 
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between the bacterial communities for the host spe-
cies (ANOVA, F = 4.031, p value = 3.9 e-10) and bio-
geographic regions (ANOVA, F = 2.422, p value = 0.022) 
included in the present study (Additional file 3). Explor-
ing these qPCR results more deeply, we see that these 
significant results are driven by some specific host spe-
cies and biogeographic regions. For species C. adolphi 
(decreasing from average), C. atratus and C. unimacula-
tus (both increasing from average), appear to be driving 
much of this difference, and for biogeographic regions 
our results indicate that the Antilles (increasing from 
average), is impacting this result. All results from these 
specific groupings can be found highlighted in Additional 
file 4.

We define the core bacterial community of Cephalotes 
samples as ASVs present in at least 50% of all individuals 
since we are looking across species that span more than 
50 million years of host evolution [46]. Our core micro-
biome analyses sought to find shared bacterial members 
among turtle ant’s samples. By identifying and applying 
core bacterial communities in microbial ecology stud-
ies is crucial to target ASVs that may play key roles in 
host-microbe interaction [47]. In addition, we examined 
the core community at several taxonomic levels with the 
PhyloCore program, whose algorithm identifies essential 
taxa through microbial phylogeny and presence data [48], 
and our results can be viewed in the heat tree, with the 
core taxa highlighted in red text (Fig.  1A). This means 
that all ASVs that had the taxonomic level equal to or 
below those highlighted in red text were included in the 
subsequent analyses and are displayed in Fig.  1B. For 
the 18S rRNA library it was not possible to identify the 
presence of a core community, because they were more 
variable and not stable. Our 18S rRNA analysis was also 
unable to reach lower taxonomic levels since most ASVs 
were only assigned to the Eukaryote level, highlighted in 
gray bars in Fig.  2A. The reason for this is because the 
18S rRNA database is not as well resolved or populated 
as the bacterial community database. For subsequent 
analyses, we removed these taxa only assigned to Eukary-
ote, and continued with the 43 samples assigned to lower 
taxonomic ranks. The diversity of these remaining sam-
ples can be seen in Fig. 2B.

Alpha diversity
Overall, the core bacterial community (16S rRNA) was 
composed of 29% Burkholderiaceae, 28% Xanthomona-
daceae, 26% Rhizobiaceae, followed by 7% Opitutaceae, 
2% Rickettsiaceae (Wolbachia), 2% Lactobacillaceae (Lac-
tobacillus), and others in smaller abundance (See Fig. 1B). 
For our 18S rRNA library, after removing ASVs returned 
as Eukaryote, we still recover 63% Metazoa, 36% Fungi, 
and others in smaller abundance (See Fig. 2B).

Overall, our data show high bacterial alpha diversity 
within Cephalotes with Shannon and Simpson met-
rics (Additional file  5) when compared with Daceton 
armigerum, Camponotus spp. and Ponerine ants workers 
[25, 49–51]. In addition, our data indicate that this high 
alpha diversity occurs in all biogeographic regions and 
in general for the different species, except for a few sam-
ples. However, we found host species-based differences 
in alpha diversity analysis in the full dataset (Kruskal–
Wallis—all groups, H = 78.650, p value = 0.03). Still, 
when we explore these pairwise results, we see that only 
a few combinations of species are driving these results. 
Those species that showed significant results (< 0.05) 
are highlighted in Additional file  6. This result was also 
explored for biogeographic region-based differences in 
alpha diversity and our full dataset did not show signifi-
cant results (Kruskal–Wallis—all groups, H = 6.180, p 
value = 0.518).

To explore these results more deeply, we investigated 
whether any core bacteria exhibit specificity to a par-
ticular species or biogeographic region, or whether the 
distribution of ASVs is more widespread. Our results 
presented in Additional file 7 show this generalized pat-
tern, therefore there is no specificity. Still, four main 
ASV bacterial orders were recurrent in terms of abun-
dance in our study, and they are the Xanthomonadales, 
Rhizobiales, Opitutales and Betaproteobacteriales (which 
includes Burkholderiaceae) and this can be seen both in 
the cluster for species (Additional file 7A) as well as for 
the different biogeographic regions (Additional file 7B).

Considering our eukaryotic community data associated 
with turtle ants, we did not find species-based differences 
in alpha diversity in the full dataset (Kruskal–Wallis—all 
groups, H = 27.043, p value = 0.254) or in biogeographic 
region-based comparisons (Kruskal–Wallis—all groups, 
H = 4427, p value = 0.729). We also explored if any micro-
bial eukaryotes exhibit specificity to a particular species 
or biogeographic region. However due to the low taxo-
nomic resolution of the 18S rRNA database, a large part 
of our data was removed (those who were only identifed 
as Eukaryote). Therefore, we cannot thoroughly investi-
gate this question (Additional file 8).

Beta diversity
Our beta diversity analyses sought to assess how species 
identity and biogeographic region influence the com-
position (unweighted unifrac distance) and abundance 
(unweighted unifrac distance) in both bacterial (16S 
rRNA) and eukaryotic (18S rRNA) communities (Fig. 3) 
of turtle ants. The two categories that seem to impact 
the composition and abundance of bacterial communi-
ties (16S rRNA) are belonging to different host species 
of Cephalotes (unweighted unifrac, Pseudo-F = 3.046, 
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Fig. 1 Bacterial communities (16S rRNA) associated with turtle ants. A Heat tree phylogeny highlighting in red text the core bacterial community of 
Cephalotes from the present study. B Stacked barplots show the relative abundance of the bacterial order composition (16S rRNA) of each individual 
sample (column) with the host species group denoted along the bottom
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p value = 0.001, weighted unifrac, Pseudo-F = 1.850, 
p value = 0.001) and different biogeographic regions 
(unweighted unifrac, Pseudo-F = 3.512, p value = 0.001, 
weighted unifrac, Pseudo-F = 1.842, p value = 0.004). 
The unweighted unifrac distance results can be seen in 
Fig. 3A, B. We also explored the non-metric multidimen-
sional scaling (NMDS) ordination with the Bray Curtis 
metric of the different species and biogeographic regions 

that considers both the composition and abundance of 
Cephalotes samples present in this study and found both 
categories can structure bacterial communities (Addi-
tional file 9).

For the microbial eukaryotes (18S rRNA) host spe-
cies has no impact on both composition and abundance 
(unweighted unifrac, Pseudo-F = 1.084, p value = 0.397, 
weighted unifrac, Pseudo-F = 1.121, p value = 0.347). 

Fig. 2 Microbial eukaryotic communities (18S rRNA) associated with turtle ants. A Stacked barplot showing the relative abundance of eukaryote 
order composition (18S rRNA) of each individual sample (column). Unclassified orders are represented in gray. B Filtered stacked barplots showing 
the relative abundance eukaryote order composition (18S rRNA) of each individual sample (column) with the host species group denoted along the 
bottom
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Also, when we explore the different biogeographic 
regions, the same pattern was identified with no impact 
on both composition and abundance (unweighted uni-
frac, Pseudo-F = 1.521, p value = 0.115, weighted unifrac, 
Pseudo-F = 1.374, p value = 0.130) (see unweighted uni-
frac results in Fig. 3C, D).

In addition, if we explore the potential clusters respon-
sible for these significant results in the pairwise PER-
MANOVA results highlighted in orange in Fig. 4A, B of 
the bacteria and Fig. 4C, D of the eukaryotes (clusters p 
value < 0.05). We see that for the groupings of species, 
both the composition and the abundance of bacterial 
communities seems to be significant overall for species 
C. grandinosus and C. pusillus, but considering only the 
composition, we find overall differences between C. atra-
tus and C. maculatus (Fig. 4A). In terms of the compo-
sition of the bacterial community of the biogeographic 

regions, in general, we found differences in practically all 
groups, except for the Nearctic region. In addition, we 
found no differences regarding the abundance of bacte-
rial communities in the different biogeographic regions 
(Fig.  4B). Overall, for the eukaryotic microbial commu-
nities in the groupings of species we did not find any 
significant clustering in in composition and abundance 
(Fig. 4C). For biogeographic regions we found differences 
in composition and abundance for the Mesoamerica 
region. (Fig. 4D).

Correlation between bacterial (16S rRNA) and eukaryote 
(18S rRNA) communities
Our analysis revealed 359 significant correlations (p 
value less than 0.05) between 16S rRNA and 18S rRNA 
ASVs associated with the Cephalotes samples, with 172 
interactions identified as positive correlations and 187 

Fig. 3 Impact of composition and abundance of the bacterial community (16S rRNA) and of microbial eukaryotes (18S rRNA) associated with 
Cephalotes (beta diversity) belonging to different host species and biogeographic regions. A PCoA of bacterial community (unweighted unifrac 
distance matrix) of different Cephalotes species. B PCoA of bacterial community (unweighted unifrac distance matrix) of different biogeographic 
regions. C PCoA of microbial eukaryotic communities (unweighted unifrac distance matrix) of different Cephalotes species. D PCoA of microbial 
eukaryotic communities (unweighted unifrac distance matrix) of different biogeographic regions
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as negative correlations as can be seen through the net-
work structure in Fig.  5A. The positive (red) and nega-
tive (blue) correlations of bacteria and eukaryotes in 
the community can be identified in pairs as seen in the 
heatmap (Fig. 5B). These results indicate that some of the 

bacterial diversity is likely from their eukaryote microbes 
and should be further investigated to be fully understood. 
However, some of these interactions, especially of bac-
teria, may be occurring due to ant microbe interactions, 

Fig. 4 Pairwise PERMANOVA results of bacteria and eukaryotic microbial communities. A Unweighted and weighted unifrac distances of bacterial 
communities highlight in orange the groupings of host species that are impacting the results (p value < 0.05). B Unweighted and weighted unifrac 
distances of bacterial communities highlight in orange the groupings of biogeographic regions that are impacting the results (p value < 0.05). 
C Unweighted and weighted unifrac distances of microbial eukaryotes highlighting in orange the groupings of host species that are impacting 
the results (p value < 0.05). D Unweighted and weighted unifrac distances of microbial eukaryotes highlighting in orange the groupings of 
biogeographic regions that are impacting the results (p value < 0.05)

(See figure on next page.)
Fig. 5 Correlation between bacterial and eukaryotic communities of Cephalotes hosts. A Regularized Generalized Canonical Correlation Analysis 
(rGCCA) correlation network between bacterial (16S rRNA) and eukaryotes (18S rRNA) communities associated with Cephalotes samples. Positive 
correlations are represented by red edges, and negative correlations by blue edges. B Heatmap indicating the positive (red) and negative (blue) 
correlations between the bacterial and eukaryotic communities of Cephalotes samples. The bacterial and eukaryotic ASVs were grouped according 
to the similarity of the correlations, as seen with the trees
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Fig. 5 (See legend on previous page.)
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which we further investigated in the present study in the 
co-diversification section below.

Coevolutionary patterns of the core bacterial lineages 
of the turtle ants
This analysis was performed with the most recent and 
robust phylogenomic tree (UCE) for the genus Cepha-
lotes [45]. Each core bacterial community associated 
with Cephalotes turtle ants was analyzed separately 
to understand the evolutionary history of these asso-
ciations with the Mantel test and PACo (Procrustean 
Approach to Cophylogeny) analyses (Fig.  6). Compar-
ing the two results, the Mantel tests show more con-
served results for our data than the PACo analysis. Of 
all the bacteria analyzed, the Burkholderiaceae ASVs 
were the only group that showed strong patterns of 
coevolution with their host Cephalotes species for both 
the Mantel test and PACo analyses. The Arcobacte-
riaceae also shows significant Mantel test results, but 
when examining the tanglegram and the PACo analysis 

we see that this result is probably being impacted by 
having few representative ASVs associated with the 
core microbiome of Cephalotes species and should be 
further studied. Two other groups of bacteria that did 
not show a sign of codiversification with turtle ants by 
either of the two methods are Wolbachia and Aceto-
bacteriaceae (Fig.  6), while the remaining show varied 
support for codiversification with their turtle ant hosts 
between statistical methods. As there is a discussion in 
the literature about the use of the Mantel test in some 
cases in phylogenetic comparative analyses (see [52]), 
we decided to show both statistical results, especially 
highlighting the differing results, so that future stud-
ies may consider using at least another test besides 
Mantel for a more reliable analysis. If we exclude the 
results from the Mantel test, we find that several other 
core bacterial groups may be codiversifying with their 
turtle ant hosts including Bacilli, Flavobacteriaceae, 
Opitutaceae, Rhizobiaceae, Sphingobacteriales, and 
Xanthomonadaceae.

Fig. 6 Exploring the coevolution signal of each core bacterial lineage associated with Cephalotes. Note that in addition to visualizing the bacteria 
occurrence in the host through a tanglegram, two statistical tests are applied to explore the coevolutionary signal of the bacterial communities 
and turtle ant evolutionary history: Mantel test and PACo analysis. P value less than 0.05 suggesting codiversification are highlighted in purple, and 
greater than 0.05 highlighted in yellow
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Discussion
Investigating host-associated microbial communities can 
reveal insights into the ecological and evolutionary suc-
cess of the host [53, 54]. Insects are one of the groups 
of animals with the greatest diversity and dominate ter-
restrial ecosystems [2], and it is believed that this suc-
cess has been partially achieved due to their microbial 
partners [55–57]. Within the microbiome there may be 
mutualistic, parasitic and commensal species associated 
with a host [58–60], however there are still few studies 
that explore symbiotic interactions across prokaryotic 
and eukaryotic microbes in invertebrate hosts [25, 53]. 
These symbionts are likely transmitted in different ways, 
with or without sharing coevolutionary stories with their 
host. Microbial communities are extremely diverse, and 
they occur in a variety of locations within the body and 
tissues of the host insect [55–57].

Within the Formicidae ant family it is no different and 
growing evidence suggests that the partnership with 
microbes was fundamental for ants to reach new niches 
[2, 4]. Many studies with ants have shown that they 
engage in diverse symbiotic interactions with diverse fac-
tors structuring these microbial communities [4, 16, 17, 
26, 31, 32, 34, 35, 44, 49, 50, 61]. However, the majority 
of these studies focus only on bacteria, leaving underex-
plored other microbial partners (with few exceptions [8, 
25]).

The core bacterial community results from this study 
corroborate previous work on turtle ants, emphasizing 
that associated bacteria are highly conserved [31, 33–35]. 
As in these studies, the core bacteria that we found were 
Burkholderiales, Opitutales, Pseudomonadales, Rhizobi-
ales, and Xanthomonadales, and in addition to those, we 
also recovered other bacterial groups in high abundance 
across host samples such as Bacilli, Sphingobacteriales, 
Flavobacteriaceae, Arcobacteraceae, Acetobacteraceae 
and Wolbachia. This pattern of conserved bacterial com-
munity has already been observed by other insects such 
as the social bee [62] and also in ants of the Camponotini 
tribe [28, 32, 49, 50, 63]. As in Camponotini-Blochmannia 
interactions, the core bacterial community of Cephalotes 
provides fundamental functions for the host by contrib-
uting to nutritional upgrading with nitrogen recycling 
and synthesis of essential and non-essential amino acids 
[35]. Additionally, turtle ants also exhibits a high rate of 
oral-anal trophallaxis [2], which allows young adults (free 
of symbionts) to consume anal secretions from another 
adult sister, thus acquiring these core symbionts.

Evidence from previous studies suggests that Burk-
holderiales, Opitutales, Rhizobiales and Xanthomo-
nadales found in Cephalotes samples are involved in 
upgrading the diet by recycling urea and obtaining 
nitrogen for the host [4, 33, 35] and also assisting in 

the formation of the cuticle of the exoskeleton [43]. But 
these bacteria are not exclusive to Cephalotes and some 
of them have already been identified in other species of 
ants as well, such as Rhizobiales. This bacterial group has 
been associated with other herbivorous species such as 
Dolichoderus [64], but also in other species with omnivo-
rous and carnivorous habits such as Hapergnathos salta-
tor, Pheidole, Paraponera clavata, Daceton armigerum 
and army ants [4, 15, 17, 25, 65, 66]. Although the role of 
this bacterial group is not fully understood, especially in 
these hosts with a high protein diet, studies suggest that 
this bacterium may also be related to protein degradation 
[67].

Another order of bacteria identified in this study that 
was strongly associated with Cephalotes samples in 
previous works was Opitutales, which was composed 
almost exclusively of the genus Cephaloticoccus, previ-
ously found in Cephalotes [33, 44, 68]. This bacterium is 
in high abundance in the midgut of Cephalotes samples 
suggesting that it may assist in the acquisition of nitro-
gen for the host [33]. Interestingly among the diversity of 
bacteria associated with turtle ants, our 16S rRNA library 
was able to recover more aerobic than anaerobic bacteria. 
The same pattern was also found for another leaf-eating 
grasshopper insect [69]. Although this needs to be inves-
tigated further, this result suggests that the level of oxy-
genation in these insect guts may be favoring the survival 
of these bacteria.

Specifically in ants, several studies have already showed 
that there is structuring of bacterial communities of dif-
ferent species, stage of development within the colony, 
parts of the body and different tissues, habitats, host 
phylogeny and even the diet of the host[4, 6, 15, 17, 25–
27, 31, 32, 34, 44, 49, 50]. Growing evidence has shown 
that there is no absolute rule for factors structuring host 
microbiomes, and that each study system has its particu-
larities and must be considered individually.

In the case of turtle ants, despite having a stable bacte-
rial core community [23, 24, 31, 34, 35] it is possible to 
find natural variation and structure in these communities 
when analyzed across different scales. Previous studies 
have been able to show structuring of Cephalotes bacte-
rial communities in different gut chambers [14, 33, 44], 
and also in different colonies of Cephalotes varians [34], 
and our data also indicate that both belonging to a cer-
tain species as well as to a certain biogeographic region 
contributes to the structuring of the composition of the 
microbial communities of Cephalotes. In addition, spe-
cies and biogeographical region of the ant host impacted 
bacterial quantification (copies of 16S rRNA) identified 
through qPCR. We also found significant differences for 
the abundance of bacterial communities within the dif-
ferent species of Cephalotes analyzed. In addition, we 
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found differences in abundance of bacterial communities 
in the different biogeographic regions, but the same pat-
tern was not observed for eukaryotic communities.

Interactions between microbial communities and hosts 
are being increasingly studied, including eukaryotic and 
bacterial domains [25, 53]. Our data show the synergism 
or antagonisms between the bacterial and microbial 
eukaryotic partners within Cephalotes hosts. In general, 
if these interactions of eukaryotic and bacterial commu-
nities show mutualism, parasitism, or a tripartite interac-
tion (or more parts) it still deserves to be further explored 
in future studies. As one of the examples, Wolbachia 
showed positive and negative interactions with several 
different microbial eukaryotic taxa. This bacteria is one 
of the most well-known bacteria infecting insects, includ-
ing social insects [70] whose consequences for host ants 
have not yet been fully clarified (but see [71, 72]). Thus, 
the relationship between Wolbachia and these other taxa 
are undescribed and deserves to be explored in depth.

Some symbionts have shown patterns of codiversifica-
tion with the host, probably facilitated by a high fidel-
ity to vertical transmission, and this is evidenced by the 
congruence of the host’s phylogenetic tree and the sym-
biont as already observed in Buchnera and aphids [73], 
Snodgrassella and Gilliamella bacteria in corbiculate 
bees [74–76], Blochmannia and Camponotini ants [30] 
and Firmicutes and army ants [15]. Previous studies have 
found evidence of a correlation between the entire bacte-
rial community and the phylogeny of twenty five species 
of Cephalotes, suggesting that this pattern may reflect 
codiversification of core bacteria and host or a similar 
selective environment between related hosts [31].

Approaches that take individual host-associated bac-
terial groups separately into account should also be 
explored. For example a study conducted recently with 
the abdomen/gaster of eleven species of Cephalotes were 
able to find correlation between the bacterial commu-
nity and the phylogeny of the host [33], a result mainly 
structured by Opitutales and Burkholderiales. Our study 
conducted on a broad sampling of Cephalotes species 
shows that for some lineages we failed to find evidence 
of codiversification with the host turtle ants, and we only 
found Burkholderiaceae bacterial lineage are codiversify-
ing and being consistently transmitted vertically or may 
have varying histories of the timing of acquisition or fre-
quent horizontal gene transfer between closely related 
bacteria. Another suggestion is that some of these bacte-
ria are being picked up from the environment, which may 
explain the signal from the biogeographic regions struc-
turing the microbial communities in this present study. 
This same trend was observed in deep-sea anglerfish, 
despite different species sharing the main symbionts, 
these are not acquired vertically. In this system, deep-sea 

anglerfish acquire the symbionts from the environment 
in every new generation [77].

Horizontal acquisition of beneficial microbes through 
anal trophallaxis is essential in colonies of bees and ter-
mites [78–80]. The social behavior of these insects allows 
for the constant acquisition and maintenance of micro-
bial partners within individuals of the same colony [19]. 
Similarly the stability of the core community associated 
with turtle ants in this study and in several previous 
studies [4, 31, 34, 35], is likely due to acquisition across 
generations and between individuals through oral anal 
trophallaxis [2, 33]. In general, detecting codiversification 
in horizontally acquired microorganisms is rarer than in 
vertically acquired microorganisms [81].

Conclusions
Overall, we have shown that for the turtle ants there is a 
diverse and evolutionarily stable core bacterial commu-
nity that is structured by host species and to some extent 
biogeography of the host. Although we found some signal 
of microbial interactions between bacteria and microbial 
eukaryotes the lack of a highly populated microbial 18S 
rRNA database precluded us from fully exploring these 
data. We did find codiversification of Burkholderiaceae 
bacterial lineage with their Cephalotes hosts, which leads 
to interesting questions about what microbial or host fac-
tors influence when these partner histories become evo-
lutionarily intertwined.

Methods
Collection, DNA extraction and sequencing
For this study we included 192 samples of Cephalotes, 
representing more than 75 different species and cover-
ing the entire geographic distribution of the genus. The 
complete list of specimens and location can be found 
in Additional file 10. Vouchers of all samples have been 
deposited in the scientific holdings of entomological col-
lections. After collection, the specimens were preserved 
in 95% alcohol and stored in the − 20° C freezer.

DNA extraction used DNeasy Blood & Tissue Kits 
(Qiagen, USA) and DNeasy PowerSoil Kit (Qiagen, 
USA) with the modification of a beat-beating step and 
addition of Proteinase K and was performed accord-
ing to the manufacturer’s recommendations. Total 
DNA was extracted from either from one gaster (abdo-
men) or one whole worker, or even in the case of mate-
rial deposited in collections with the non-destructive 
methodology. Subsequent analyses controlled for these 
variations so as not to affect the results. Additionally, 
recommendations by Rubin et  al. [82] and Moreau [83] 
were applied to minimize contamination. In addition, 
four blank samples were added as negative controls. Our 
library targeted the amplification of the V4 region of 
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16S rRNA (primers: 515F “Parada” forward primer, bar-
coded 5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC 
ACG CT XXXXXXXXXXXX TAT GGT AATT GT GTG 
YCA GCMGCC GCG GTAA [84]/806R “Apprill” reverse 
primer 5’-CAA GCA GAA GAC GGC ATA CGA GAT  AGT 
CAG CCAG CC GGA CTA CNVGGG TWT CTAAT [85]) 
and the V9 region of 18S rRNA from microbial eukary-
otes (Euk_1391f forward primer 5′-TAT CGC CGTT 
CG GTA CAC ACC GCC CGTC/EukBr reverse primer, 
barcoded 1510r 5’ CAA GCA GAA GAC GGC ATA CGA 
GAT  XXXXXXXXXXXX AGT CAG TCAG CA TGA 
TCC TTC TGC AGG TTC ACC TAC  [86, 87]) according 
to the recommendations of [88], and following the Earth 
Microbiome Project (EMP) protocol (http:// www. earth 
micro biome. org/ proto cols- and- stand ards/). For each 
sample three PCRs were performed containing 12  μl of 
PCR water (Certified DNA-free), 10  μl of 5 Prime Hot-
MasterMix (1 ×) (5 PRIME, Gaithersburg, USA), 1 μl of 
forward primer (5 mM concentration, 200 pM final), 1 μl 
of reverse primer (5  mM concentration, 200  pM final) 
and 1 μL of template DNA (> 0.20 ng/μl), totaling a final 
volume of 25 μl per PCR reaction. These reactions were 
placed in the thermocycler under the following condi-
tions: 94  °C for 3  min, with 35 cycles at 94  °C for 45  s, 
50  °C for 60  s, and 72  °C for 90  s, with a final cycle of 
10  min at 72  °C. Agarose gel electrophoresis (1%) con-
firmed the efficiency of the amplification. Quantifica-
tion by Qubit (Thermo Fisher Scientific) was performed 
with the High Sensitivity Assay Kit (Life Technologies 
Corp., Carlsbad, USA). Quantification by qPCR was also 
performed (see description below). Afterwards, samples 
were pooled to a total of 100 μL per pool, and purified 
with QIAquick PCR Purification Kit (Qiagen, USA), fol-
lowing the manufacturer’s recommendations. Each pool 
was diluted to 4 nM and then denatured. Then the pool 
was further diluted to a final concentration of to 6.75 pM 
with a 10% PhiX, following Illumina recommendations. 
Sequencing was performed at Argonne National Labo-
ratory (Lemont, Illinois, USA) with two separate runs 
(16S and 18S rRNA) through MiSeq Illumina V3 Reagent 
Kit 600 Cycles (300 × 300) using the custom sequencing 
primers and procedures described in the supplementary 
methods in Caporaso et  al. [88]. All raw sequence data 
are publicly available on the NCBI SRA (accession num-
ber PRJNA859790 and BioSample SUB11807550).

Bacterial quantification
Quantification of the abundance of bacteria was per-
formed with real-time qPCR using the universal primers 
515f (5′-GTG CCA GCMGCC GCG GTAA) and 806r (5′-
GGA CTA CHVGGG TWT CTAAT) (http:// earth micro 
biome. org/ emp- stand ard- proto cols/ 16s/) to target the 
bacterial 16S rRNA gene using a CFX Connect qPCR 

machine (Bio-Rad, Hercules, USA), with SYBRAdvanced 
2X (Bio-Rad) SYBR green supermix and 2 μL of DNA. All 
samples were quantified in triplicate. Serial dilutions of 
plasmids containing inserts of E. coli 16S rRNA were per-
formed to establish standard curves [82]. Only reactions 
that had a R2 from 90 to 110% were considered satisfac-
tory. In order to search for significant differences in bac-
terial quantification (qPCR) between samples, Analysis 
of variance (ANOVA) and Wilcoxon tests were applied 
through Dplyr package [89] in R software [90]. We used 
ggplot2 [91] to visualize all qPCR results.

Bioinformatic analysis
Initial analyses were conducted with demultiplexed 
sequences with Dada2 [92, 93] in Qiime2-2019.10 [94]. 
Paired-end sequence reads were trimmed for remov-
ing primers and maintaining read quality regions. The 
SILVA 132 QIIME database with 99% similarity [95, 96] 
was used for taxonomic assignment of ASVs (amplicon 
sequence variants). Our own classifier was created, and 
the strings were classified by taxon using the “feature-
classifier classify-sklearn” command [97]. In the initial 
filtering of our data, singleton, mitochondria, and chlo-
roplast taxa were removed. For the 18S rRNA library, 
Hymenoptera reads were also removed. Four negative 
controls were used to remove contaminants from the 
samples through the Decontam package [98] using R 
with the prevalence method.

The microbial phylogeny was performed using SATé-
enabled phylogenetic placement (SEPP) [99, 100]. We 
used PhyloCore (50%) to determine the main or “core” 
ASVs present in our library [48], which means that ASVs 
present in at least 50% of all individuals [46].The core 
bacteria of the Cephalotes species included in this study 
were visualized through a heat map with the Metacoder 
package [101] in the environment of R. These ASVs were 
used in all subsequent analyses. Additionally, we used 
BugBase [102] to predict aerobic and anaerobic micro-
bial phenotypes for the Cephalotes bacterial 16S rRNA 
library. Alpha and Beta diversity were computed follow-
ing QIIME2 recommendations [103] and were viewed 
using the emperor software [104] with 2000 and 1000 
reads cutoff for 16S rRNA and 18S rRNA, respectively. 
To investigate the composition and abundance microbes 
of Cephalotes species permutational multivariate analysis 
of variance (PERMANOVA) tests were also implemented 
in QIIME2. To test whether variations in DNA extraction 
kits or different sample types (gaster, whole worker and 
non-destructive) impacted our results, PERMANOVA 
analyses were conducted, and our results show that we 
only found differences between non-destructive samples. 
Therefore, these were excluded from our subsequent 
analyses, with 151 samples remaining.

http://www.earthmicrobiome.org/protocols-and-standards/
http://www.earthmicrobiome.org/protocols-and-standards/
http://earthmicrobiome.org/emp-standard-protocols/16s/
http://earthmicrobiome.org/emp-standard-protocols/16s/
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Subsequent analyses tested the influence of both: (I) 
host species identity and (II) geographical distribution 
of the host turtle ants on both microbial communities. 
For the latter, we followed the recommendation of Price 
et al. [105], and divided the Neotropical region into eight 
biogeographic regions based on Morrone’s [106] classifi-
cation: Amazonian, Antillean, Chacoan, Mesoamerican, 
Mexican transition zone, Nearctic, Northwestern South 
American and Paraná. To better visualize the influence of 
these factors on the bacterial communities in the present 
study, we use PCoA plots showing results of composi-
tion and abundance that considers the influence of phy-
logenetic signal (weighted and unweighted unifrac) and 
NMDS analysis (Bray Curtis) as well. We also investigated 
the distribution of the main/core ASVs associated with 
turtle ants for the different species of the host as well as 
the different biogeographic regions. All of these analyses 
were conducted using phyloseq [107] and ggplot2 (Wick-
ham 2009) packages in the R environment.

Correlation of the 16S rRNA 18Sr RNA libraries
To test the potential for correlation of the 16S rRNA and 
18S rRNA libraries obtained in the present study we per-
formed a Regularized Generalized Canonical Correlation 
Analysis (rGCCA) through the mixOmics package [108, 
109] in the R environment. The visualization of these cor-
relations was implemented in Cytoscape 3.5.1 [110] and 
the heatmap was implemented in R software.

Testing coevolution between core bacteria and turtle ant 
hosts
Each microbial lineage has an independent and com-
plex evolutionary history with the host, therefore two 
methods were applied to test for coevolutionary signal 
between the core gut bacteria (50%) and the host’s evo-
lutionary history: Mantel test and PACo (Procrustean 
Approach to Cophylogeny) analyses [111, 112]. For this, 
the host Cephalotes phylogenomic tree of Price et  al. 
[45] was used in the following analyses. First, the 10 
main strains of bacteria recovered were analyzed sepa-
rately because we know that each bacterial lineage may 
have a different evolutionary history. For the Mantel test, 
the ASV tables of each of the 10 bacterial strains were 
transformed into distance (Bray Curtis metric) as well 
as the host phylogenetic tree, and the correlation of the 
two matrices was calculated using the Mantel test (999 
permutations) using the Vegan package [113] in R. The 
PACo analysis explicitly tests the dependence of the phy-
logeny of the symbiont, in the case of the present study 
of host-associated bacteria, against the phylogeny of the 
host turtle ants [111, 112]. For this, the program needs 
three inputs: two phylogenetic trees with branch lengths 

one each from the host and bacteria, and a binary matrix 
that encodes symbiont-host associations.

For a better visualization of host-bacterial associations, 
tanglegrams were plotted with the Phytools package 
[114] in the R environment using the cophylo function. 
Hence, phylogenetic trees were transformed into matri-
ces of pairwise patristic distance, then into matrices 
of principal coordinates, and these are subjected to the 
analysis of Procrustes with global goodness-of-fit statistic 
with significance tested by random permutations (10,000 
permutations).
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