157 research outputs found

    Providing Support for the Optimized Management of Declarative Processes

    Get PDF
    Declarative process models are becoming increasingly popular due to the high flexibility they offer to process participants. Based on a declarative process model, there exist numerous possible enactment plans, each one with specific values for relevant objective functions (e.g., overall completion time). How to actually execute such a model is quite challenging due to several reasons:(1) proper objective functions must be considered to find optimized enactment plans, (2) users often do not have an understanding of the overall process, (3) the presence of a variety of temporal constraints to be met during process enactment, and (4) the need to coordinate multiple instances of a process concurrently exe-cuted (which compete for shared resources). This is further complicated by the fact that the enactment of new process instances may continuously start over time and many organizations do not exactly know their future demands. In such con-text, to properly support users in enacting declarative process models, this paper suggests generating optimized enactment plans from declarative process models. The generated enactment plans may be used for different purposes, e.g., to pro-vide personal schedules to users. Moreover, they may be dynamically adapted if required. To evaluate the applicability of our approach in practical settings we apply it to a real process scenario from the healthcare domain

    Model of action plan for management systems energy

    Get PDF
    The ISO 50001 standard unified in 2011, internationally, the accumulated knowledge concerning integrated management systems of energy; ie learning, dissemination, and implementation requirements are in force, particularly in routine activities of the business sector. Therefore, this article presents the general ideas about the most important features to consider in the developing of action plans, adaptable to business peculiarities: actions, objectives of each action, description, times when you must run, the estimated budget, both human and financial resources available and technical and human resources responsible for the success of the plan. Is proposed as research product, a new tool based on the ISO 50001 standard and the “ Guide to implementation of a comprehensive energy management” developed by the Unit of Mining and Energy Planning (UPME)

    Diagnosis of bearing with mechanical vibrations and virtual instruments

    Get PDF
    The mechanical vibration analysis has great importance in the condition based maintenance; in this sense, the bearings are elements that affect more stops rotating machinery. Therefore, this paper describes the hardware and software architecture of a vibration analyzer developed in LabVIEW oriented to study bearings extracting its parameters or descriptors through the power spectral density (PSD) and the RMS and DC signal values in time. Shows the advantages of working with such solutions: cost and the possibility of increasing benefits as needed

    Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems

    Get PDF
    © 2017 IOP Publishing Ltd. Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations

    Absorbance based light emitting diode optical sensors and sensing devices

    Get PDF
    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements

    Synthesis, structures and photoluminescence properties of silver complexes of cyclic (alkyl)(amino)carbenes

    Get PDF
    Silver complexes of cyclic (alkyl)(amino)carbenes (CAACs), (RL)nAgX (n = 1, X = Cl, Br, I; n = 2, X = OTf; R = Me2, Et2, or adamantyl) are accessible in high yields by reacting free carbenes with silver salts. The smaller carbene ligand Me2L leads to the formation of a mixture of neutral (Me2L)AgCl and cationic [(Me2L)2Ag]+ products. The transmetallation of (AdL)AgCl with copper and gold halides gives the corresponding copper and gold compounds (AdL)MCl (M = Cu and Au) in a clean and quantitative reaction. Whereas (Me2L)AgCl is monomeric in the solid state, (Et2L)AgCl crystallizes as a Cl-bridged dimer. None of the compounds show metal-metal interactions. The complexes show blue photoluminescence, which consists of a fluorescence component with a lifetime of several nanoseconds, as well as a long-lived emission in the microsecond regime

    Normalized equilibrium in Tullock rent seeking game

    Get PDF
    International audienceGames with Common Coupled Constraints represent manyreal life situations. In these games, if one player fails tosatisfy its constraints common to other players, then theother players are also penalised. Therefore these games canbe viewed as being cooperative in goals related to meetingthe common constraints, and non cooperative in terms ofthe utilities. We study in this paper the Tullock rent seekinggame with additional common coupled constraints. We havesucceded in showing that the utilities satisfy the property ofdiagonal strict concavity (DSC), which can be viewed asan extention of concavity to a game setting. It not onlyguarantees the uniqueness of the Nash equilibrium but also of the normalized equilibrium

    Optimal Design of a Trickle Bed Reactor for Light Fuel Oxidative Desulfurization based on Experiments and Modelling

    Get PDF
    YesIn this work, the performance of oxidative desulfurization (ODS) of dibenzothiophene (DBT) in light gas oil (LGO) is evaluated with a homemade manganese oxide (MnO2/γ-Al2O3) catalyst. The catalyst is prepared by Incipient Wetness Impregnation (IWI) method with air under moderate operating conditions. The effect of different reaction parameters such as reaction temperature, liquid hour space velocity and initial concentration of DBT are also investigated experimentally. Developing a detailed and a validated trickle bed reactor (TBR) process model that can be employed for design and optimization of the ODS process, it is important to develop kinetic models for the relevant reactions with high accuracy. Best kinetic model for the ODS process taking into account hydrodynamic factors (mainly, catalyst effectiveness factor, catalyst wetting efficiency and internal diffusion) and the physical properties affecting the oxidation process is developed utilizing data from pilot plant experiments. An optimization technique based upon the minimization of the sum of the squared error between the experimental and predicted composition of oxidation process is used to determine the best parameters of the kinetic models. The predicted product conversion showed very good agreement with the experimental data for a wide range of the operating condition with absolute average errors less than 5%

    Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

    Get PDF
    We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg², a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10⁻²⁵ yr⁻¹. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻¹ (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁴, or φ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%
    corecore