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Graphical Abstract 

 

 

       

 

Silver complexes with cyclic(alkyl)(amino) carbene ligands can be mononuclear or binuclear in 

the solid state. Complexes with sterically hindered CAAC ligands show blue photoluminescence.    

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Synthesis, Structures and Photoluminescence Properties of Silver Complexes of Cyclic 

(Alkyl)(Amino)Carbenes  

 

Alexander S. Romanov and Manfred Bochmann*  

 

School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK  

 

* Corresponding author. Tel./fax: +44 01603 592044. 

E-mail address: m.bochmann@uea.ac.uk (M. Bochmann). 

 

Dedicated to Professor John Gladysz on the occasion of his 65th birthday. 

 

 

Abstract 

Silver complexes of cyclic (alkyl)(amino)carbenes (CAACs), (RL)nAgX (n = 1, X = Cl, Br, I; 

n = 2, X = OTf; R = Me2, Et2, or adamantyl) are accessible in high yields by reacting free carbenes 

with silver salts. The smaller carbene ligand Me2L leads to the formation of a mixture of neutral 

(Me2L)AgCl and cationic [(Me2L)2Ag]+ products. The transmetallation of (AdL)AgCl with copper and 

gold halides gives the corresponding copper and gold compounds (AdL)MCl (M = Cu and Au) in a 

clean and quantitative reaction. Whereas (Me2L)AgCl is monomeric in the solid state, (Et2L)AgCl 

crystallizes as a Cl-bridged dimer. None of the compounds show metal-metal interactions. The 

complexes show blue photoluminescence, which consists of a fluorescence component with a 

lifetime of several nanoseconds, as well as a long-lived emission in the microsecond regime. 

 

Keywords: Silver complex; Photoluminescence; Carbene; Transmetallation; Crystal structure 
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1. Introduction 

The organometallic chemistry of N-heterocyclic carbene (NHC) complexes can be traced back to 

1915, when Chugaev reported the reaction products of K2PtCl4 with hydrazine and 

methylisocyanide, which in the 1970s were confirmed as platinum complexes of non-cyclic N-

stabilized carbene ligands [1]. Later the discoveries by Wanzlick [2] and Öfele [3] and the isolation 

of imidazolylidene-type N-heterocyclic carbenes (NHCs) by Arduengo [4] established carbenes as 

one of the most versatile ligand families in organometallic chemistry [5, 6, 7, 8]. Carbene complexes 

of silver have found widespread applications in synthetic chemistry as carbene transfer agents [9, 

10], in medicinal chemistry as antimicrobial and antitumor agents [11], in catalysis [12], and as 

luminescent materials for potential applications in organic light-emitting diodes (OLEDs) [13, 14].  

We have recently shown that cyclic (alkyl)(amino)carbene (CAAC) complexes of copper and 

gold show strong photoluminescence, with solid-state quantum yields of up to 96% [15,16]. We 

report here the syntheses, structures, reactivity and photoluminescence behavior of silver complexes 

with CAAC ligands with different degrees of steric hindrance, Me2L, Et2L, and AdL (Chart I). 

 

 

Chart I 

 

2. Results and discussion 

2.1. Synthesis. Mono-carbene silver(I) halide complexes with ligands Me2L, Et2L and AdL were 

prepared in a moderate to high yields by combining solutions of the respective CAAC ligands with 

silver salts in THF (Scheme 1). The reaction outcome is governed by the steric requirements of the 

CAAC ligands. For example, the 1H NMR spectrum of the reaction with Me2L showed a mixture of 

(Me2L)AgCl and [(Me2L)2Ag]AgCl2 in a molar ratio of about 4:1. Flash chromatography allowed the 

isolation of (Me2L)AgCl (1) in moderate yield (55%). The formation of the cationic species 

[(Me2L)2Ag]+ was confirmed by comparison of the 1H and 13C NMR spectra with an authentic 

sample of [(Me2L)2Ag]+OTf– (2), which was prepared from silver triflate with two equivalents of 
Me2L in 92% yield. By contrast, Et2L and AdL provide only the desired 1:1 silver complexes 

(Et2L)AgCl (3) and (AdL)AgX (X = Cl (4); Br (5); I (6)) in high yields.  
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Scheme 1 

 

 Complexes 1–6 are white solids which are indefinitely stable in air for prolonged periods of 

time. Interestingly, the silver complexes are stable in sunlight, without showing signs of degradation 

or photoreduction to metallic silver. They show good solubility in polar non-protic solvents like 1,2-

difluorobenzene, dichloromethane, THF, MeCN, DMF or acetone and are moderately soluble in 

chlorobenzene, toluene or ethanol but insoluble in hexane. The CD2Cl2 and CDCl3 solutions of 1–6 

proved to be stable to ligand rearrangement and formation of bis-carbene adducts [Ag(L)2]
+ over a 

period of several weeks, after which only slight decomposition could be noticed. The stability of the 

carbene C–Ag bond and the lack of ligand interchange in solution are demonstrated by the 

appearance of the 13C carbene-C resonances as sharp doublets; for instance, complex 1 shows 13C–
109Ag and 13C–107Ag coupling constants of 246 and 213 Hz, respectively. This is in sharp contrast 

with the behavior of imidazole-type silver NHC complexes, where the equilibrium 2(L)AgCl ↔ 

[(L)2Ag]AgCl2 is commonly observed in solution at room temperature [17]. Obviously the CAAC 

complexes are substantially less labile. Whereas mono- and bis-CAAC complexes show very similar 
13C carbene-C chemical shifts (e.g. 1, 255.7 ppm, compared to [(carbene)2Ag]+ 2, 255.9 ppm), the 
13C–109Ag and 13C–107Ag coupling constants decrease sharply from over 200 Hz for mono-CAAC 

adducts to 183.5 and 159.6 Hz, respectively, for cation (2). Such coupling constant values fall in the 

range characteristic for bis-carbene cationic silver complexes [18]. The carbene-C chemical shifts of 

the mono-carbene complexes 1, 3–6 shift downfield with an increase in bulkiness of the CAAC 

ligand, from 255.7 for (Me2L)AgCl (1) to 262.5 ppm for (AdL)AgCl (4).  

 We tested (AdL)AgCl in transmetallation reactions with copper and gold salts (Scheme 2), 

which allowed the previously reported copper and gold compounds (AdL)MCl (M = Cu and Au [19] 

to be obtained in essentially quantitative yields. The attempted ligand transfer of either Me2L or AdL 

from neutral or cationic complexes (1, 2, and 4) to [(p-cymene)RuCl2]2 or [(cis-cyclooctene)RhCl]2 

resulted in the recovery of the starting materials even after prolonged reaction times (48 h in CH2Cl2 

at room temperature). The clean formation of (AdL)AuCl by ligand transfer from the corresponding 
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silver complex contrasts with Cazin’s recent report on the formation of [(carbene)2Au]+ products in 

similar transmetallations from (CyL)CuCl to gold (CyL = cyclohexyl-substituted CAAC) [20].  

 

 

Scheme 2 

 
2.2. Structures 

 

Crystals of the silver halides suitable for X-ray diffraction were obtained by layering of 

CH2Cl2 solutions with hexane. Neutral compounds (1, 4–6) and the cation of the bis-carbene 

complex (2) are monomeric and show an almost linear geometry for the C-Ag-X moieties, with C1–

Ag1–Cl1 angles approaching 180° (Figures 1 and 2). The carbene C–Ag and Ag–Hal(1) bond 

lengths show negligible deviations of 0.01 Å from various other monomeric complexes reported in 

the literature [18, 21]. Complexes 4 and 5 possess two independent molecules in the unit cell (see 

SI, Figure S1). Only weak intermolecular C–H···Hal interactions were identified. There were no 

signs for the close metal-metal contacts in the crystal structures of monomeric complexes 1, 2, 4–6. 

    

Fig. 1. Crystal structure of monomeric complexes (Me2L)AgCl (1) and (AdL)AgCl (4) (independent 

molecule A). Ellipsoids are shown at the 50% level. Hydrogen atoms are omitted for clarity. 

Selected bond lengths [Å] and angles [°] with average values for two independent molecules: Ag1–

C1 2.0769(18) / 2.088(2), Ag1–Cl1 2.3246(5) / 2.3168(6), C1–C2 1.514(3) / 1.522(3), C1–N1 

1.295(2) / 1.303(3), C1–Ag1–Cl1 177.37(6) / 175.83(6).  
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Fig. 2. The structure of cation in [(Me2L)2Ag]OTf (2). Ellipsoids are shown at 50%. Hydrogen atoms 

are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ag1–C1 2.109(5), Ag1–C21 

2.109(5), C1–C2 1.510(6), C1–N1 1.292(6), C1–Ag1–C21 179.7(2). 

 

The structure of the silver chloride (Et2L)AgCl (3) differs significantly. The complex forms a 

dimer with bridging chloride ligands (Figure 3), linked by a two-fold axis. The C1–Ag1–Cl(1) angle 

is 112.37(5)°. Compared to the linear complex 1, the three-coordinate geometry of the silver atom in 

3 is reflected in an elongation of the C–Ag and Ag–Cl(1) bond lengths by 0.026 and 0.1 Å, 

respectively. The bridging Ag–Cl1A bond length falls in the range of 2.798–2.869 Å reported for 

the similar dimeric structures [22]. The Ag(1)···Ag(1A) distance in 3 is 3.500(3) Å, rather longer 

than the sum of the van der Waals radii of 3.44 Å for Ag(I) [23]. 

 

 

Fig. 3. Crystal structure of [(Et2L)AgCl]2. Ellipsoids are shown at the 50% level. Hydrogen atoms are 

omitted for clarity. Selected bond lengths [Å] and angles [°]: Ag1–C1 2.1029(19), Ag1–Cl1 
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2.4236(5), Ag1–Cl1A 2.8371(5), C1–C2 1.520(3), C1–N1 1.300(3), C1–Ag1–Cl1 158.93(5), C1–

Ag1–Cl1A 112.37(5), Cl1–Ag1–Cl1A 88.368(18). Symmetry code (A): –x + 1/2, –y + 3/2, z. 

 

2.3. Photophysical Properties. 

We have shown recently that both the free AdL ligands and their coinage metal complexes 

show pronounced photoluminescence (PL) [15]. Figure 4 shows the UV and PL spectra of Me2L and 
Et2L. The UV spectra of Me2L and Et2L show a π-π* absorption at ~260 nm, accompanied by a low-

intensity trail to about 400 nm. The free ligands are only weakly emissive at room temperature but 

show notable luminescence at 77K, with unstructured emissions at 452 and 435 nm for Me2L and 
Et2L, respectively, and lifetimes of around 12 ns.  

   

Fig. 4. UV-vis spectrum of free carbenes Me2L and Et2L in THF solution (a). Emission spectra of Me2L 

(b) and Et2L (c) in the solid state at 77 and 293K (λexc = 370 nm).  

 

On complexation of the carbenes to AgCl, the low-energy absorption band near 300 nm is red-

shifted in the sequence (Me2L)AgCl ≤ (Et2L)AgCl < (AdL)AgCl (Figure 5 and S2, Table 1). 

Comparison of the UV-Vis spectrum of free carbenes with those of the silver halide complexes 

shows that this band is affected by the silver and halide atoms. In analogy to the spectra of (AdL)MX 

(M = Cu or Au; X = Cl, Br, I) [15], this low energy band is assigned to (σ + X)–π* charge transfer 

[24] from the metal-halide bond to the LUMO, which has metal-carbene π* character [15, 16]. 

Within the series (AdL)AgX (X = Cl, Br, I) the UV absorption is essentially insensitive to the nature 

of X. The UV/vis spectrum of the bis(carbene) compound [(Me2L)2Ag]OTf (2) shows a broad π-π* 

band at 285 nm (Figure S2, ESI).  

In contrast to the strong luminescence of copper CAAC complexes, the Me2L silver complexes 

1 and 2 are non-emissive. On excitation at 340 – 360 nm, the Et2L and AdL complexes 3–6 display 

featureless blue emissions, ranging from 390 to 600 nm, with λmax around 430 – 440 nm (Figure 5), 

a blue-shift of about 20 nm compared to the analogous (AdL)CuX complexes [15]. The emission 

(a) 
(b) (c) 
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wavelengths are slightly halide-dependent and increase by ca. 5 nm in the sequence X = Cl > Br > I 

(Table 1). In THF solution complexes 3–6 are very poorly emissive. All samples showed significant 

photodegradation (formation of brown material) if excited with light below 310 nm. 

 

 

Fig. 5. Left: UV-vis spectra for THF solutions of Me2LAgCl, [Et2LAgCl]2 and AdLAgCl. Middle: 
Photoluminescence spectra of Et2LAgCl and AdLAgX (X = Cl, Br, I) in the solid state. Right: 
Emission kinetics of (AdL)AgI (6) on two time axes excited at 370 nm. 
 

Table 1. Photophysical properties of silver complexes (298 K)  
Complex Absorption/nm 

(ε/M–1 cm–1) in 

deaerated THF 

Solid state 

λem (λex) (nm) τ
a(ns) Φ

b kr 

(103 

s−1)c 

knr 

(104 

s−1)d 

(Me2L)AgCl 1 291 (752) –e – – – – 

[(Me2L)2Ag]OTf 2 
236 (3752), 285 

(830) f 
–e – – – – 

[(Et2L)AgCl]2 3 293 (832) 454 (290–400) 
3.7±0.1 ns 

18.9±0.1 µs 
0.05 2.7 5.1 

(AdL)AgCl 4 318 (583) 432 (270–380) 
2.7±0.1 ns 

15.0±0.6 µs 
0.045 3.1 6.1 

(AdL)AgBr 5 317 (420) 437 (280–380) 
4.0±0.1 ns 

8.1±0.1 µs 
0.05 6.3 12 

(AdL)AgI 6 
273 (1760), 315 

(384) 
443 (280–380) 

3.3±0.1 ns 

6.7±0.1 µs 
0.005 0.8 15 

a Excited state lifetime, measured at λmax; 
b Quantum yields determined by using an integrated 

sphere; c radiative rate constant kr = Φ/ τ; d Nonradiative constant knr = (1 – Φ)/ τ; e Poorly emissive; f 
deaerated CH2Cl2 solution 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

The emission spectra show biexponential decay, with components in both the nanosecond and 

microsecond region (Figure 5, Table 1). Careful comparison of photophysical properties for 

complexes 3–6 with those of free carbenes Me2L, Et2L and AdL, as well as the observed photostability 

of (CAAC)AgX complexes, allows us to rule out the formation of free carbene as the source of 

fluorescence. By comparison, the emissions of the analogous (AdL)CuX complexes showed a strong 

prompt fluorescence on a sub-nanosecond time scale [25]. Further studies will be aimed at 

elucidating the nature of the fast and slow emission pathways in silver complexes in comparison to 

copper.  

 

3. Conclusion 

The reaction between free cyclic(alkyl)(amino)carbenes (Me2L, Et2L and AdL) and silver salts 

represents a simple preparative protocol for the synthesis of neutral (RL)AgCl and cationic 

[(RL)2Ag]+ silver complexes. The sterically least-demanding CAAC carbene (Me2L) leads to a 

mixture of the neutral (Me2L)AgCl and cationic [(Me2L)2Ag]+ products, which are easily separated. 

The silver complex (AdL)AgCl proved to be suitable as a transmetallation agent, to give the 

analogous copper and gold compounds in quantitative yield. On the other hand, the carbene transfer 

to other transition metals such as rhodium or ruthenium proved unsuccessful. Silver CAAC 

complexes are resistant to air, moisture, light and ligand rearrangement, as in 

(L)AgCl↔[(L)2Ag]AgCl2. Depending on the steric requirements of the carbene ligands, 

mononuclear and binuclear structures may exist in the solid state; however, none of the complexes 

show close metal-metal interactions. While the Me2L silver complexes proved to be non-emissive, 

the Et2L and AdL compounds exhibit photoluminescence which is blue-shifted by about 20 nm 

compared to the analogous copper complexes.  

 

 

4. Experimental 

 

General considerations 

 

Unless stated otherwise all reactions were carried out in air. Solvents were distilled and dried 

as required. The carbene ligands Me2L, Et2L, (AdL), were obtained according to literature procedures 

[26]. 1H and 13C{1H} NMR spectra were recorded using a Bruker Avance DPX-300 MHz NMR 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

spectrometer. 1H NMR spectra (300.13 MHz) and 13C{1H} (75.47 MHz) were referenced to CD2Cl2 

at δ 5.32 (13C, δ 53.84) and CDCl3 at δ 7.26 (δ 13C 77.16) ppm. 19F NMR spectra (282.4 MHz) were 

referenced externally to CFCl3 and internally to C6F6 (δF -164.9). UV-visible absorption spectra 

were recorded using a Perkin-Elmer Lambda 35 UV/vis spectrometer. Photoluminescence 

measurements were recorded on a Perkin Elmer LS55 Fluorescence Spectrometer with a solids 

mount attachment where appropriate. Time resolved fluorescence data were collected on a time-

correlated single photon counting (TCSPC) Fluorolog Horiba Jobin Yvon spectrofluorimeter using 

Horiba Jobin Yvon DataStation v2.4 software. A NanoLED of 370 nm was used as excitation 

source, with an instrument response function width of 2 ns. The collected data were analysed using a 

Horiba Jobin Yvon DAS6 v6.3 software. 

 

Synthesis of (Me2L)AgCl (1) 

An oven-dried 100-mL Schlenk flask was equipped with a stirring bar and charged with (Me2L) (0.63 

g, 2.2 mmol) and AgCl (0.314 g, 2.2 mmol) under an argon atmosphere. Anhydrous THF (20 mL) 

was added, and the resulting suspension was stirred overnight in the absence of light. The solvent 

was removed; the residue was washed with hexane, dissolved in CH2Cl2 and filtered through short 

pad of silica (1.0 cm). The colourless filtrate was concentrated to give a white solid (0.9 g), which 

according to NMR spectroscopy is a mixture of (Me2L)AgCl and [(Me2L)Ag]AgCl2 in a 4:1 molar 

ratio. The mixture was separated by column chromatography on a silica gel (5 × 2 cm). The neutral 

complex (Me2L)AgCl was eluted first with THF (white solid, 0.52 g, 55 % yield), while the ionic 

product was eluted with CH2Cl2 (white solid, 0.13 g, 14 % yield). 1H NMR (300 MHz, CDCl3) for 

(Me2L)AgCl: δ 7.40 (t, J = 7.6 Hz, 1H, CH-aromatic), 7.24 (d, J = 7.6 Hz, 2H, CH-aromatic), 2.75 

(sept, J = 6.7 Hz, 2H, CH(CH3)2), 2.05 (s, 2H, CH2), 1.43 (s, 6H, 2CH3), 1.35 (s, 6H, 2CH3), 1.29 (d, 

J = 6.7 Hz, 6H, CH(CH3)2) overlapped with 1.27 (d, J = 6.7 Hz, 6H, CH(CH3)2) ppm. 13C NMR (75 

MHz, CDCl3): δ 255.7 (dd, JC-109Ag = 245.9 Hz, JC-107Ag = 213.0 Hz, Ccarbene), 145.0 (o-C), 134.3 (d, 

JC-Ag = 2.9 Hz, Cipso), 130.0 (p-CH), 125.0 (m-CH), 83.3 (d, JC-Ag = 12.7 Hz, Cq), 54.7 (d, JC-Ag = 

11.3 Hz, Cq), 49.1 (d, JC-Ag = 4.8 Hz, CH2), 29.4 (CH3), 29.1 (CH3), 28.4 (CH3), 27.5 (CH), 22.6 

(CH3) ppm. Anal. Calcd. for C20H31NAgCl (427.12): C, 56.02; H, 7.29; N, 3.27. Found: C, 56.36; H, 

7.47; N, 3.20. 

 

Synthesis of [(Me2L)2Ag]OTf (2) 

An oven-dried 100-mL Schlenk flask was equipped with a stirring bar and charged with Me2L (0.445 

g, 1.6 mmol) and AgOTf (0.2 g, 0.78 mmol) under an argon atmosphere. Anhydrous THF (20 mL) 
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was added, and the resulting suspension was stirred overnight. After removal of the solvent, the 

residue was washed with hexane and filtered through a short pad of silica (1.0 cm) with CH2Cl2. The 

colourless filtrate was concentrated and hexane was added to precipitate the silver complex. 

Solvents were decanted and the residue dried in vacuum. Yield: 0.6 g (0.72 mmol, 92 %). 1H NMR 

(300 MHz, CD2Cl2): δ 7.41 (t, J = 7.4 Hz, 1H, CH-aromatic), 7.23 (d, J = 7.4 Hz, 2H, CH-aromatic), 

2.63 (sept, J = 6.8 Hz, 2H, CH(CH3)2), 2.00 (s, 2H, CH2), 1.31 (s, 6H, 2CH3), 1.25 (d, J = 6.8 Hz, 

6H, CH(CH3)2), 1.17 (s, 6H, 2CH3), 0.9 (d, J = 6.8 Hz, 6H, CH(CH3)2) ppm. 13C NMR (75 MHz, 

CD2Cl2): δ 255.9 (dd, JC-109Ag = 183.5 Hz, JC-107Ag = 159.6 Hz, C carbene), 144.6 (o-C), 134.3 (Cipso), 

130.0 (p-CH), 125.0 (m-CH), 83.6 (d, JC-Ag = 9.5 Hz, Cq), 54.7 (d, JC-Ag = 9.0 Hz, Cq), 48.6 (d, JC-Ag 

= 3.5 Hz, CH2), 28.9 (CH3), 28.8 (CH3), 28.0 (CH3), 27.0 (CH), 22.2 (CH3) ppm. 19F NMR (282 

MHz, CD2Cl2): δ -78.91 ppm. Anal. Calcd. for C41H62N2AgF3O3S (826.35): C, 59.48; H, 7.55; N, 

3.38. Found: C, 59.31; H, 7.63; N, 3.46. 

 

Synthesis of (Et2L)AgCl (3). 

An oven-dried 100-mL Schlenk flask was equipped with a stirring bar and charged with (Et2L) (0.25 

g, 0.8 mmol) and AgCl (0.115 g, 0.8 mmol) under argon atmosphere. Anhydrous THF (20 mL) was 

added, and the resulting suspension was stirred overnight. The solvent was removed; the residue was 

washed with hexane and filtered through short pad of silica (1.0 cm) with CH2Cl2. The colourless 

filtrate was concentrated and hexane was added to precipitate the silver complex, solvents were 

decanted and the residue dried in vacuum. Yield: 0.311 g (0.68 mmol, 85 %). 1H NMR (300 MHz, 

CDCl3): δ 7.39 (t, J = 7.3 Hz, 1H, CH-aromatic), 7.24 (d, J = 7.3 Hz, 2H, CH-aromatic), 2.80 (sept, 

J = 6.8 Hz, 2H, CH(CH3)2), 2.00 (s, 2H, CH2), 1.95–1.68 (m, J = 7.4 Hz, 4H, CH2CH3), 1.37 (s, 6H, 

2CH3), 1.29 (d, J = 6.8 Hz, 6H, CH(CH3)2) overlapped with 1.26 (d, J = 6.8 Hz, 6H, CH(CH3)2) 

1.03 (t, J = 7.4 Hz, 6H, CH2CH3) ppm. 13C NMR (75 MHz, CDCl3): δ 256.4 (dd, JC-109Ag = 246 Hz, 

JC-107Ag = 214 Hz, C carbene), 145.0 (o-C), 134.9 (d, JC-Ag = 3.7 Hz, Cipso), 130.0 (p-CH), 125.0 (m-

CH), 82.8 (d, JC-Ag = 13.5 Hz, Cq), 62.9 (d, JC-Ag = 10.6 Hz, Cq), 41.3 (d, JC-Ag = 4.9 Hz, CH2), 31.0 

(CH2), 29.5 (CH3), 29.2 (CH3), 27.5 (CH), 22.5 (CH3), 9.5 (CH3) ppm. Anal. Calcd. for 

C22H35NAgCl (456.85): C, 57.84; H, 7.72; N, 3.07. Found: C, 57.65; H, 7.51; N, 3.11. 

 

Synthesis of (AdL)AgCl (4). 

The compound was prepared as described for (Et2L)AgCl from AdL (0.603 g, 1.6 mmol) and AgCl 

(0.228 g, 1.6 mmol) as a white solid. Yield: 0.781 g (1.5 mmol, 94 %). 1H NMR (300 MHz, CDCl3): 

δ 7.41 (t, J = 7.5 Hz, 1H, aryl), 7.25 (d, J = 7.5 Hz, 2H, aryl), 3.43 (d, J = 12.6 Hz, 2H, CH2), 2.77 
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(sept, J = 6.8 Hz, 2H, CH(CH3)2), 2.24-1.77 (m, 14H, adamantyl CH and CH2), 1.36 (s, 6H, CMe2), 

1.32 (d, J = 6.8 Hz, 6H, CH(CH3)2), 1.30 (d, J = 6.8 Hz, 6H, CH(CH3)2) ppm. 13C NMR (75 MHz, 

CD2Cl2): δ 262.5 (dd, JC-109Ag = 245 Hz, JC-107Ag = 212 Hz, C carbene), 145.4 (o-C), 136.5 (ipso-C), 

130.1 (p-CH), 125.4 (m-CH), 79.9 (d, JC-Ag = 12.3 Hz, Cq), 64.8 (d, JC-Ag = 12.5 Hz, Cq), 48.1 (d, JC-

Ag = 6.0 Hz, CH2), 39.0 (CH2), 37.5 (CH), 35.7 (d, JC-Ag = 1.8 Hz, CH2), 34.7 (CH2), 29.7 (CH), 29.3, 

28.3, 27.6, 27.2, 22.9 (CH3) ppm. Anal. Calcd. for C27H39NAgCl (520.93): C, 62.25; H, 7.55; N, 

2.69. Found: C, 62.09; H, 7.36; N, 2.77. 

 

Synthesis of (AdL)AgBr (5). 

The compound was prepared as described for (Et2L)AgCl from AdL (0.368 g, 0.98 mmol) and AgBr 

(0.183 g, 0.98 mmol) as a white solid. Yield: 0.373 g (0.65 mmol, 66 %). 1H NMR (300 MHz, 

CD2Cl2): δ 7.47 (t, J = 7.6 Hz, 1H, aryl), 7.31 (d, J = 7.6 Hz, 2H, aryl), 3.39 (d, J = 11.9 Hz, 2H, 

CH2), 2.80 (sept, J = 6.6 Hz, 2H, CH(CH3)2), 2.26-1.78 (m, 14H, adamantyl CH and CH2), 1.36 (s, 

6H, CMe2), 1.30 (d, J = 6.6 Hz, 12H, CH(CH3)2) ppm. 13C NMR (75 MHz, CD2Cl2): δ 263.5 (dd, JC-

109Ag = 241 Hz, JC-107Ag = 209 Hz, C carbene), 145.3 (o-C), 136.3 (d, JC-Ag = 2.7 Hz, ipso-C), 130.1 

(p-CH), 125.3 (m-CH), 79.8 (d, JC-Ag = 12.9 Hz, Cq), 64.8 (d, JC-Ag = 11.1 Hz, Cq), 48.0 (d, JC-Ag = 

6.0 Hz, CH2), 38.9 (CH2), 37.5 (CH), 35.7 (d, JC-Ag = 2.1 Hz, CH2), 34.6 (CH2), 29.6 (CH), 29.2, 

28.2, 27.5, 27.3, 22.9 (CH3) ppm. Anal. Calcd. for C27H39NAgBr (565.39): C, 57.36; H, 6.95; N, 

2.48. Found: C, 57.11; H, 6.73; N, 2.55.  

 

Synthesis of (AdL)AgI (6). 

The compound was prepared as described for (Et2L)AgCl from AdL (0.368 g, 0.98 mmol) and AgI 

(0.23 g, 0.98 mmol) as a white solid. Yield: 0.464 g (0.76 mmol, 77 %). 1H NMR (300 MHz, 

CD2Cl2): δ 7.47 (t, J = 7.9 Hz, 1H, aryl), 7.31 (d, J = 7.9 Hz, 2H, aryl), 3.40 (d, J = 12.1 Hz, 2H, 

CH2), 2.81 (sept, J = 7.0 Hz, 2H, CH(CH3)2), 2.26-1.78 (m, 14H, adamantyl CH and CH2), 1.37 (s, 

6H, CMe2), 1.31 (d, J = 7.0 Hz, 6H, CH(CH3)2) overlapped with 1.30 (d, J = 7.0 Hz, 6H, CH(CH3)2) 

ppm. 13C NMR (75 MHz, CD2Cl2): δ 265.3 (dd, JC-109Ag = 231 Hz, JC-107Ag = 200 Hz, C carbene), 

145.4 (o-C), 136.3 (d, JC-Ag = 2.3 Hz, ipso-C), 130.0 (p-CH), 125.3 (m-CH), 79.9 (d, JC-Ag = 11.5 Hz, 

Cq), 64.9 (d, JC-Ag = 11.7 Hz, Cq), 48.1 (d, JC-Ag = 5.5 Hz, CH2), 38.9 (CH2), 37.5 (CH), 35.7 (d, JC-Ag 

= 2.3 Hz, CH2), 34.6 (CH2), 29.7 (CH), 29.2, 28.2, 27.6, 27.4, 23.0 (CH3) ppm. Anal. Calcd. for 

C27H39NAgI (611.12): C, 52.96; H, 6.42; N, 2.29. Found: C, 52.73; H, 6.15; N, 2.21. 

 

Transmetallation with CuCl 
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A 50-mL round-bottom flask was equipped with a stirring bar and charged with (AdL)AgCl (0.11 g, 

0.21 mmol) and CuCl (0.025 g, 0.25 mmol) under air. Dry CH2Cl2 (15 mL) was added, and the 

resulting suspension was stirred overnight. The resulted suspension was filtered through a short pad 

of Celite (3.0 cm). The colourless filtrate was evaporated, washed with hexane. The white residue 

was dried in vacuum. Yield: 0.099 g (0.208 mmol, 99 %). 1H and 13C NMR spectra are identical to 

those previously reported [15]. 

 

Transmetallation with (Me2S)AuCl 

Prepared as described for (AdL)CuCl from (AdL)AgCl (0.10 g, 0.19 mmol) and (Me2S)AuCl (0.056 

g, 0.19 mmol) as a white solid. Yield: 0.113 g (0.186 mmol, 98 %). 1H and 13C NMR spectra are 

identical to those previously reported [19]. 

 

X-ray crystallography  

Crystals suitable for X-ray diffraction were obtained by layering CH2Cl2 solutions with hexanes. 

Compounds (AdL)AgX (X = Cl and Br) crystallize with two independent molecules in the unit cell. 

Compounds (AdL)AgX (X = Br and I) and [(MeL)2Ag]OTf crystallize as solvates with CH2Cl2 

molecule. For complex (AdL)AgI·CH2Cl2 the CH2Cl2 molecule was disordered over two positions 

with equal occupancies linked by a center of inversion. The CH2 group (atom C23) was disordered 

over two positions with equal occupancies for complex [(MeL)2Ag]OTf·CH2Cl2. Crystals were 

mounted in oil on glass fibres and fixed on the diffractometer in a cold nitrogen stream. Data were 

collected at 140 K using Oxford Diffraction Xcalibur-3/Sapphire3-CCD (complexes (MeL)AgCl, 

[(MeL)2Ag]OTf) and (AdL)AgCl) and Rigaku Oxford Diffraction XtaLAB Synergy/Dualflex/HyPix 

diffractometers, using graphite monochromated Mo Kα radiation (λ = 0.71073 Å). Data were 

processed using the CrystAlisPro-CCD and –RED software [27]. The principal crystallographic data 

and refinement parameters are listed in Table S1. The structures were solved by direct methods and 

refined by the full-matrix least-squares against F2 in an anisotropic (for non-hydrogen atoms) 

approximation. All hydrogen atom positions were refined in isotropic approximation in “riding” 

model with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), 

where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to 

which the corresponding H atoms are bonded. All calculations were performed using the SHELXTL 

software [28].    
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Appendix A. Supplementary material 

 

CCDC 1523753-1523758 contain the supplementary crystallographic data for this paper, see 

Table S1. These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article 

can be found, in the online version, at http://dx.doi.org/10.1016/j.jorganchem.XXXX 
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Synthesis, Structures and Photoluminescence Properties of Silver Cyclic(alkyl)(amino)-

carbene Complexes 

 

Alexander S. Romanov and Manfred Bochmann 

 

       

 

Silver complexes with cyclic(alkyl)(amino) carbene ligands can be mononuclear or binuclear in 

the solid state. Complexes with sterically hindered CAAC ligands show blue photoluminescence.    
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Highlights 

 

• Facile synthesis of silver complexes of cyclic (alkyl)(amino) carbene (CAAC) ligands is 
described.  

• Surprisingly, ethyl-substituted CAAC leds to the formation of a chloride-bridged dimer.  
• Remarkably for silver carbene complexes, the new compounds are stable to light and 

show no evidence of ligand dissociation.  

• The complexes show blue photoluminescence, which is blue-shifted by 20 nm compared 
to copper analogues.  


