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Abstract. Objective. This work proposes principled strategies for self-
adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of
the bandwidth bottleneck resulting from the considerable mismatch between the
low-bandwidth interface and the bandwidth-hungry application, and a way to
enable fluent and intuitive interaction in embodiment systems. The main focus is
laid upon inferring the hidden target goals of users while navigating in a remote
environment as a basis for possible adaptations. Approach. To reason about
possible user goals, a general user-agnostic Bayesian update rule is devised to be
recursively applied upon the arrival of evidences, i.e. user input and user gaze.
Experiments were conducted with healthy subjects within robotic embodiment
settings to evaluate the proposed method. These experiments varied along three
factors: the type of the robot/environment (simulated and physical), the type of
the interface (keyboard or BCI), and the way goal recognition (GR) is used to
guide a simple shared control (SC) driving scheme. Main results. Our results show
that the proposed GR algorithm is able to track and infer the hidden user goals
with relatively high precision and recall. Further, the realized SC driving scheme
benefits from the output of the GR system and is able to reduce the user effort
needed to accomplish the assigned tasks. Despite the fact that the BCI requires
higher effort compared to the keyboard conditions, most subjects were able to
complete the assigned tasks, and the proposed GR system is additionally shown
able to handle the uncertainty in user input during SSVEP-based interaction.
The SC application of the belief vector indicates that the benefits of the GR
module are more pronounced for BCIs, compared to the keyboard interface.
Significance. Being based on intuitive heuristics that model the behavior of the
general population during the execution of navigation tasks, the proposed GR
method can be used without prior tuning for the individual users. The proposed
methods can be easily integrated in devising more advanced SC schemes and/or
strategies for automatic BCI self-adaptations.
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1. Introduction

Brain-computer interfaces (BCIs) are direct communi-
cation and control channels between the brain and arti-
ficial devices like computers, prosthetic limbs or robots.
The directness here refers to the fact that BCIs bypass
the natural neural (outside the brain) and muscular
pathways [1] which are required for all other kinds of
human-human and human-machine interaction. Typi-
cally in BCIs, the users’ brain signals are decoded into
machine actions using a mapping that is known to both
the users and the devices they control or communicate
with.

Recently, there has been growing interest in
deploying BCIs in immersive robotic embodiment
systems [2–7], whereby the objective is to allow
users to exercise physical and social interaction in a
remote environment through robotic avatars, which are
typically equipped with locomotion and manipulation
capabilities in order to allow for enhanced interaction.
Hereby and throughout this work, the terms immersion
and embodiment are used similarly to Slater and
Sanchez-Vives [8]. That is, immersion is used to refer
to the objective description of the system technicalities
that enable the users’ perception of the remote
environment based on their natural sensorimotor
contingencies (e.g. head tracking). On the other hand,
robotic embodiment is used to define the process of
replacing the user’s body by a robotic avatar, where
one speaks of the senses of self-location, agency and
body ownership as subcomponents of embodiment [9].

Fig. 1 depicts a schematic of a closed loop BCI-
based immersive robotic embodiment system. Users
continuously receive perceptual feedback from their
robot avatar embedded in the remote environment and
communicate their intentions by selectively attending
to (or gazing at) one of the available interface elements.
Other BCI paradigms like motor imagery (MI) are
possible [5], but we are mostly concerned in this work
with BCIs based on selective attention, e.g. P300
and SSVEP-based BCIs. Ultimately, in order to
fully immerse users in the remote environment, the
perceptual channels from the local environment should
be replaced by the ones that reflect the state of the
avatar in the remote environment. In this regard,
vision is the most important perceptual modality, but
other modalities undoubtedly would enhance the user
subjective experience of immersion and embodiment.
The robot, on the other side, continuously receives user

commands and translates them using available low and
high level controllers into robotic actions, that change
the state of the environment or of the robot itself.

Generally speaking, at each time instant during
BCI-based interaction, only a limited number of
interface elements can fit into the interface, whether
that be based on P300, SSVEP or MI and consequently,
only a few commands will be available to users.
This gives rise to the primary challenge in robotic
applications of BCIs, that is, the considerable
mismatch between the low-bandwidth interface and
the bandwidth-hungry application. Hierarchical menu
style BCI and adaptive BCIs offer a way to allow for an
extended set of robotic actions and thus to overcome
the bandwidth mismatch.

Interface self-adaptation is expected to bring
savings in time and in the user effort needed to arrive
at the commands of interest. Savings can be computed
for example as the difference between the cost of
selecting a command through the adaptive interface
(Ca) and the cost of selecting the same command with
a deterministic hierarchical interface (Ch) [10]. Ca can
be computed from the time needed to visually scan the
predicted interface elements till the element of interest
is found plus the required time for selecting that
specific element. Ch, on the other hand, is computed
from summation of the cognitive time needed to
formulate the sequence of interface selections, and the
time needed to make these selections. The design of
adaptive user interfaces (AUIs) is generally a highly
challenging task due to the fact that interface self-
adaptations need to (1) be unobtrusive to users (2)
keep the users in control of the system (3) allow
the user to maintain a coherent mental model of the
interface. Adaptive BCIs inherit all these challenges,
but given the limited bandwidth of the interface, self-
adaptation is a necessity, rather than an extra feature.

In order for interface self-adaptations to be of
any benefit, the system should be able to infer the
hidden goals, which the user tries to achieve in the
domain. This way, initiatives made by the interface
can be received positively by the user. The problem
of inferring user goals from observations is typically
referred to as intention or goal recognition, and is
the main concern of this work. By considering the
general problem of navigation in BCI-based immersive
robotic embodiment systems, a general user-agnostic
Bayesian framework for goal recognition is proposed.
Hereby, novel intuitive heuristics are used to model
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Figure 1: Closed loop BCI-based robotic embodiment system. Users communicate their intentions by selectively
attending to one of the interface elements, which are typically shown overlaid on the visual feedback arriving
from the remote environment. Self-adaptations in the BCI allow for extended set of actions available to the
users. An SSVEP-based interface is shown as an example here.

the user behavior, on the basis of general behavioral
patterns that are observed in humans during task
execution. The Bayesian framework is designed for
the general population allowing to infer user intentions,
without any prior training. The output of the Bayesian
inference module is a belief vector that sorts all target
goals in the environment according to how probable
they are given the observed evidence. Moreover, a
novel metric that measures the non-uniformness of
the belief vector is proposed as to reflect upon the
confidence of the inference system in its computed
beliefs. To show the usefulness of the computed
beliefs and confidence measures, a simple probabilistic
shared control scheme is devised so that adaptations
are applied to the robot movements, according to the
belief/confidence information. In order to evaluate
the performance of the designed Bayesian inference
module, experiments were conducted with healthy
subjects in an immersive robotic embodiment setup
and in simulation. Results show that the intention
recognition system is able to track the hidden user
goals with relatively high accuracy. When the belief of
the intention recognition module is used to modulate
parameters of the robot movement, less user effort
(measured by the number of interaction) is required
to accomplish the assigned tasks.

This paper proceeds as follows. Sec. 2 provides
background information about adaptive interfaces in
the context of robotic navigation, to motivate the work
on intention and goal recognition. Sec. 3 provides a
short review on state-of-the-art approaches to intention
recognition for robotic navigation tasks. Our Bayesian
goal inference systems is introduced in Sec. 4. Detailed
information about the experiments used to evaluate the
proposed methods is described in Sec. 5. Experimental
results are reported in Sec. 6 followed by a discussion
in Sec. 7. This paper concludes in Sec. 8.

2. Background and Motivation

User commands in BCI-based robotic navigation
applications range from commanding the mobile
base to move for some distance in one direction,
to commanding the mobile base to move to a
specific location or to autonomously perform complex
maneuvers like “move to the kitchen” or “walk through
the doorway”. Obviously, the varying degrees in the
goal-directness of incoming user commands require
adequate levels of autonomy at the robot side. And
conversely, by deciding first on the level of autonomy,
adaptive interfaces can suggest conforming sets of
commands for interaction. The exact relation between
the interface and the level of autonomy, therefore,
can be decided upon either by the interface itself as
in [11] or by the user as in [12, 13]. Either way,
the higher the robot autonomy, the less control is
left to the user. In a general sense, robot autonomy
is thought of here as a continuum where the fully
autonomous and fully manual control modes are its
extremes. Often the selection of the optimal point on
the autonomy continuum is done in two steps. First,
the continuum is discretized into different general
levels (or modes) [14, 15] and the appropriate mode
is selected. The optimal point of automation is then
selected within that mode. In the context of robotic
navigation applications, we borrow from [16] and adopt
the 6 basic levels or robot operation modes shown in
Fig. 2.

In goal-oriented control mode, users only commu-
nicate the end goal location they have in mind, and
the robot autonomously navigates towards it. This re-
quires global knowledge of the environmental map and
path planning capabilities at the robot side. In the help
with some tasks mode, like walking through a door, the
robot needs to plan a safe local trajectory, by which it
remains e.g. equidistant from the doorjambs. In the
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Figure 2: Robot operational modes for navigation
tasks. The level of automation can be modulated
within each mode of operation as well.

obstacle avoidance mode, it is the robot’s job to exe-
cute maneuvers that avoid obstacles while the human
user is issuing commands that move it through the en-
vironment. In the collision avoidance mode, a typical
behavior of the robot is to halt movement in the face
of obstacles while the user is commanding movements.

As hinted previously, the different automation
levels define the nature of interface self-adaptations.
For instance, in the goal-oriented mode, the interface
might provide the user with the most probable next
goals (or goal locations) in the environment. Such
predictions can be performed on the basis of the
transition probabilities between the different goals in
the environment, which can be learned e.g. from the
history of user interaction with the system. In absence
of any knowledge about the user preferences in the
domain, other interface adaptation strategies should
be devised. One possible approach, is to allow users
to interact with the robot in a lower autonomy mode,
so that some evidence can be gathered throughout
interaction and used to predict the target goals of the
user.

In this work, we mainly focus on the problem of
goal recognition during interaction within the collision
avoidance mode, where user input is additionally
restricted to incremental commands that translate
or rotate the robot in the different directions with
predefined steps. The reason for this is threefold. First,
it has been noted in [17], that powered wheelchair
users want to actively drive the wheelchair rather than
being merely its passengers. The same can be said
about the users of teleoperation/embodiment robots,
and therefore, it is imperative to give users the sense
of control they need [18], as much as can be allowed by
other existing constraints like the safety of the human,
the machine and the environment, the capabilities of
the robot and the abilities/disabilities of the human

users. The collision avoidance mode leaves most of
the control in the hands (or rather the brains) of the
users, and at the same time guarantees navigation
safety. Second, and most importantly, it allows us to
develop the methodologies, by which gathered evidence
from user commands in low autonomy levels can guide
the interface self-adaptations in the higher autonomy
modes. Third, with long term interaction with the
robot, transition probabilities can be learned, and
used later to guide interface adaptations in higher
autonomy modes. The next section will provide a brief
review on the problem of goal/intention recognition in
general, with some emphasis on intention recognition
in navigation tasks.

3. Related Work: Goal/Intention Recognition

The term plan recognition has been defined by Schmidt
et al. [19] as the process of inferring an agent’s goals
from observing the actions the agent is performing in
the domain and organizing these actions into a plan
structure which explicitly describes the goal-subgoal
relations among them. Conformingly, recent research
on human action understanding within navigation
contexts shows that a machine equipped with inverse
planning is able to efficiently model this cognitive
process [20]. We refer interchangeably to the agent
whose actions are observed as the actor or the user,
whereas the observing agent that makes the inference
is referred to as the recognizer.

The goals refer to desired states of the world or
states of knowledge about the world. In order to
arrive at these states, an actor needs to perform a
sequence of actions that defines a plan. Actions taken
might change the state of the world, or the state of
the actor’s knowledge about the world. Actions are
defined by their preconditions, i.e. possible states in
which they can take place, and effects that describe
the state transition when the action is performed. In
some domains, it is possible to enumerate all possible
goal states and plans an actor might have. The set of
these plans is referred to as plan library.

The problems of plan and goal recognition have
many details in common. Systems which try to
infer the final target state only are referred to
as goal recognition (GR) systems, and those which
additionally predict the sequence of actions which
moves the world from its current state to the desired
final state are referred to as plan recognition systems.
In navigation applications, these refer respectively to
inferring the final goal location the user has in mind
and the full trajectories, with which the user wants to
arrive at these target locations. Depending on the level
of abstraction used in recognition, both systems might
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be referred to as intention recognition systems †.
Intention recognition systems can be classified

with respect to the actor’s attitude towards the
recognizer into three categories. First, the keyhole
recognition refers, as the term suggests, to the case
when the actor is not aware of the existence of
the recognizer [21, 22]. In the second category,
which is referred to as intended recognition, the
actor cooperatively chooses actions which reduce
the ambiguity about his/her hidden intentions [23].
Finally, adversarial recognition concerns itself with
the case when the actors actively try to confuse the
recognizer by choosing misleading actions [22,24].

Charniak and Goldman [25] argue that the
problem of intention recognition is largely a problem
of inference under conditions of uncertainty, rendering
the probabilistic approaches of best fit. Such
approaches introduce a numerical measure of belief
that reflects how likely or probable individual plans
are and can thus, explicitly represent the uncertainty
associated [26]. The vector that contains the
probability of all plans (or goals) is often referred
to as the belief vector. Bayesian networks, and in
particular, dynamic Bayesian networks (DBNs) are
probably the mostly used probabilistic method for
intention recognition in different domains, e.g. for
predicting user plans in a game [21].

In robotic navigation contexts, Perrin et al. [27]
use a DBN for goal recognition, in a system, with which
the user interacts by either confirming or rejecting its
propositions. The proposed Bayesian network addi-
tionally includes variables that integrate the time of
the day, whether the phone is ringing and the previ-
ously visited goals. The conditional probability distri-
butions (CPDs) used in the network are learned from
training sequences. Alternatively, goal recognition is
realized in [17] on the basis of simple metrics that are
computed from the distances and relative orientations
the wheelchair has to available goal locations (available
doors in this case). On the other hand, several ap-
proaches have regarded the goal/plan recognition prob-
lem as a planning problem [28–30]. The main idea here
is that, instead of enumerating all the plans in the do-
main, which is not always feasible, a general planner
can be used to generate the possible plans to all avail-
able target states. Along these concepts, the works
in [31, 32] use a recursive Bayesian update for plan
recognition based on environmental data, global path
planning, and history of interaction. The Bayesian up-
date hereby is defined with

† Other abstraction levels exist. For instance, the user might
want to move to the kitchen to prepare a meal, and this very
objective of the user can be considered the user intention.

Pk(ik−m:k | uk−m:k) = (posterior)

P (uk | ik−m:k, uk−m:k−1) (user model)

P (ik | ik−m:k−1, uk−m:k−1) (plan process model)

Pk−1(ik−m:k−1 | uk−m:k−1) (prior)

η, (normalization)

(1)
where ik is the user mental plan to move from the cur-
rent location to the target location in mind, uk is the
user input at time instant k, uk−m:k is the sequence of
the user input from time instant k − m to k, and m
defines the past time instances that influence the plan
and the user input at any time. Hereby, for instance,
the user model defines the likelihood of the user input
given that the user has the plan evolution ik−m:k and
issued previous commands uk−m:k−1. The user and
plan process models are defined differently for a variety
of systems and inputs. For a BCI-based input and free
space area [31], the user model is defined with a simple
heuristic function that takes into consideration the rel-
ative orientations of the robot to the different goals and
the distances to each of them. The plan process model
is computed such that when the robot moves from the
pose xk−1 to xk, the straight path between xk−1 and
the jth goal is transformed into the straight path be-
tween xk and the jth goal, and the jth probability is
transferred to the new path. More detailed user and
plan process models are proposed in [32] for joysticks
and deterministic discrete interfaces for different kinds
of environments.

The different approaches to intention recognition
in the previous short review make full or partial
use of available information about the environment
and the history of interaction to arrive at good
estimates about the user’s hidden goals or plans. The
Bayesian approach allows to model this information
in a sparse representation, and yet achieves reliable
estimates. We conjecture that, in navigation tasks
with discrete interfaces, the information that can be
obtained with goal recognition (rather than the full
plan recognition as used in [31, 32]) is sufficient to
guide interface adaptations. Our approach to the goal
recognition problem, as will become clearer later, uses
computed optimal or suboptimal path plans to all
target goals as extra evidence regarding the probability
of these goals. Similar to different approaches in
plan and goal recognition [28–32], these plans are
computed with off-the-shelf classical planners. The
major difference in this respect between the proposed
goal recognition method and similar plan recognition
methods [31, 32] is that in the former only a single
plan is computed per target goal, whereas in the
latter, individual goals might have different global
path plans (whose probabilities need to be inferred).
Furthermore, in comparison to the approach in [27],
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we aim at goal recognition systems that require no
training whatsoever, so that users can benefit from
the recognition system in their first use. On the other
hand, straightforward methods like [17] may not be
able to exploit useful available information, e.g. the
previous user actions towards the target goal.

4. Methods: Bayesian Framework to Goal
Recognition in Navigation Tasks

4.1. Problem Statement

The objective of the goal recognition module is to
infer users’ target goals throughout interaction, where
evidence is gathered from observed users’ commands
and their directions of gaze. It is assumed here that
the users are unaware of the existence of the recognizer,
i.e. keyhole intention recognition.

We denote the set of enumerable goals in the
environment with G = { g1 W , g2 W , · · · , gn W }, where
each goal is defined by its pose with respect to the
global coordinate system of the available map (W ),
such that gm W = [ xm W , ym W , zm W , θm W ]T , where
m ∈ {1, 2, · · · , n} and θm W ∈ [−π, π] is the smallest
angle between the x-coordinate of the mth goal frame
and that of the global frame (W ), where the z-
coordinate of all goals is parallel to that of the world
frame. We assume that the number (n) and the poses
of these goals, which might represent the location of
salient objects the user frequently uses, are accessible
by the goal recognition system. For the sake of
simplicity in the notation, the postscript W is dropped
when we refer to goals and their poses in the global
coordinate system. The unknown target goal, which
the user has in mind, is defined here as a discrete
random variable G with a sample space G.

While having a goal location gm in mind at time
instant k, the user updates the mental path plan

im
k of how to arrive there from the robot’s current

pose xk = [xk, yk, θk]T . We write this in the form,
im
k = xk → gm . Additionally, we define the length of

a path plan (in meters) with l( im
k) = lm

k. In order
to follow the plan in mind, the user issues a command
uk ∈ U . In this work, we only consider incremental
commands that can be issued with discrete interfaces
(e.g. keyboard or SSVEP-BCI), and therefore, the
set of all possible commands is enumerable, i.e. U =
{move forward, move backward, move left, move right,
turn left, turn right, stop}. User commands are
translated into robot actions ak that change the state
of the robot from xk to xk+1. The change in the robot
pose that is triggered by translational and rotational
commands is set respectively to the default values
δddef (m/command) and δθdef (rad/command).

In order to make the math easier to follow, we
introduce the dummy user command u0, which implies

x0 = x1 and im
0 = im

1 for all m. The user’s gaze
direction at time instant k is denoted by hk, which we
assume here to be defined with the rotational angles
of the gaze direction relative to an arbitrary reference
frame.

We assume that the localization module provides
a reliable estimate of xk, and that the mental path
plans to all goals (i.e. xk → gm ) of the user can
be estimated reliably with a global path planner on
the basis of the 2D cost map of the environment,
denoted by Mk. Implicitly, with this assumption we
hypothesize that users in the navigation domain act
approximately optimally (rationality assumption [20])
and try to follow the path that minimizes some cost
function. The global path planner is expected to find
paths similar to the ones the user plans for the different
goals.

Therefore, we can assume that at time instant k,
the GR module has access to the following information

• The observed sequence of user commands up
to time instant k, which is denoted by u0:k =
(u0, · · · , uk).

• The observed sequence of user gaze up to time k,
which is denoted by h0:k = (h0, · · · ,hk).

• The sequence of plans computed to all goals
up to time instant k, denoted by i1:n

0:k =
( i1 0:k, . . . in 0:k), where im

0:k = (x0 → gm , · · · ,xk →
gm ).

The problem of goal recognition can be then
formally defined as estimating the probability

Pm
k = Pk(G = gm | u0:k,h0:k, i1:n

0:k),∀m, (2)

where
∑n

m=1 Pm
k = 1 for all k. The probabilities

of all goals can be concatenated in the n-dimensional
vector Pk which encodes the system belief about the
user’s hidden goal at time instant k, where Pk =
[ P1 k, P

2
k, · · · , Pn k]T . In this work, Pk is referred to

as the belief vector.
We assume that before the user starts navigating

in the remote environment, the GR module has no
prior knowledge about the next pursued goal, and
therefore Pm

0 = 1/n,∀m. Additionally, the subscript
k is reset to 0 each time the robot arrives at one of the
available goals, which automatically resets the belief
vector to a near-uniform distribution, wherein the last
visited goal is assigned a smaller probability relative
to other available goals, i.e. Pm

0 = 0.1/n if goal m
was the last visited goal and Pi 0 = 1/n,∀i 6= m. The
belief vector P0 is then normalized to obey probability
axioms.

4.2. Bayesian Update Rule

The objective of this section is to devise a recursive
Bayesian update rule for the belief about user goals
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based on available information to the GR module. We
begin by assuming that the recognizer has access to the
true user input uk, e.g. keyboard-based interface, but
later, the update rule is extended to noisy interfaces,
e.g. BCIs. At a later point in this section, it is
further discussed how to deal with the fact that the
user commands and information about the user’s gaze
typically arrive asynchronously.

The conditional probability of a goal m given pre-
vious observations can be computed recursively accord-
ing to

Pk( gm | u0:k,h0:k, i1:n
0:k) = (posterior)

P (uk | gm , u0:k−1,h0:k, i1:n
0:k) (user input model)

P (hk | gm , u0:k−1,h0:k−1, i1:n
0:k) (user gaze model)

P ( i1:n
k | gm , u0:k−1,h0:k−1, i1:n

0:k−1) (plans evolution model)

Pk−1( gm | u0:k−1,h0:k−1, i1:n
0:k−1) (prior)

η, (normalization)

(3)

where η is a normalization factor which guarantees∑n
m=1 Pk( gm | u0:k,h0:k, i1:n

0:k) = 1 for all k. The
major difference between the two rules in (3) and (1),
is that i1:n

0:k is assumed known for all possible goals
in (3), whereas in (1), the computation of their proba-
bilities is the target of the update rule.

In the following, generic and user-agnostic models
for the user input, the user gaze and the path plans
evolution will be proposed.

4.2.1. User Input Model
The term P (uk | gm , u0:k−1,h0:k, i1:n

0:k) models the
likelihood a user issues a command uk at time k, while
having the goal gm in mind and given the sequence of
current and previous path plans to all goals i1:n

0:k,
the sequence of previously issued commands u0:k−1
and the sequence of user gaze h0:k up to time instant
k. We assume that the user input uk is conditionally
independent of u0:k−1,h0:k and im′

0:k, for all m′ 6= m,
given the current target goal and the mental path
plan at time instant k. This reduces the user input
model to P (uk | im

k). Intuitively, this means that
the user command at time instant k is only influenced
by the mental path plan that brings the robot to
the target goal location at that time instant. We
assume additionally that the issued command is mainly
influenced by the local surroundings of the robot, and
in particular by a subgoal or a viapoint on the path

im
k, referred to as gm

k. Subgoals are determined on
each path to each defined goal, i.e. xk → gm

k → gm

as the furthest point, to which a straight line can
be drawn from the current robot position without
touching any obstacle. This definition is similar to the
one proposed in [32, 33] for discrete interfaces. Sub-
goals are searched for within a predefined circle around
the robot with a radius dsubgoal. The process of finding
the subgoals is depicted in Fig. 3. These assumptions

Goal 1 ( g1 )

Goal 2 ( g2 )

Robot state xk

g1 k

g2 k

Plan i1 k

Plan i2 k

Subgoals

dsubgoal

y

x

y

x

TR
W

SW

SR

Figure 3: An example of estimating subgoals for goals
1 and 2. Subgoals in the figure are indicated by the
red crosses and the black rectangle corresponds to an
obstacle.

lead to the new approximation for the user model as
P (uk | im

k) ≈ P (uk | xk, gm
k).

Once the user command uk arrives, the relative
orientations of the robot with respect to the computed
subgoals are used to compute the approximated
likelihood function P (uk | xk, gm

k) as shown in Fig. 4.
For instance, when a turn left command is issued by the
user, all computed subgoals which lie in the left semi-
circle with respect to the robot’s heading are assigned
a higher score than those which lie in the right semi-
circle. The user model ignores the z-component (the
altitude) of the available goals.

4.2.2. User Gaze Model
The term P (hk | gm , u0:k−1,h0:k−1, i1:n

0:k) denotes
the likelihood of a user’s gaze hk given the sequence
of user commands u0:k−1, the previous gaze sequence
h0:k−1 and the sequence of all computed plans i1:n

0:k,
where the user has the goal gm as a target goal. We
assume that the user always tries, if feasible, to bring
the final goal gm into sight from the current robot
location xk. This assumption is supported by the
work in [34], where it has been concluded that, in
natural settings, look-ahead fixations represent a task-
dependent strategy. In our application, look-ahead
user fixations are assumed necessary to update the
navigation plan every time the robot moves or objects
in the environment move. Additionally, it has been
shown in [35] that subjects with normal vision direct
their gaze primarily ahead or at the goal while walking
a simple and obstacle-free route. Our assumption
obviously ignores the possibility that the user’s focus
of attention can be shifted towards subgoals, which
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x

y

s = 0.7

s = 0.9

s = 1.0

(a) Forward

x

y

s = 1.0

s = 0.7

turn left

(b) Turn left

x

y

s = 1.0

s = 0.7

turn right

(c) Turn right

Figure 4: The user input model shown for the translational and rotational commands. Subgoals are assigned
a score depending on their location relative to the robot heading (corresponds to the x-axis in the plots). The
lighter the area, the lower the score, e.g. subgoals, which are located in the negative x direction and have an
angle greater than 180◦ (behind the robot) get the lowest scores assigned if a forward command were issued.
The shown scores are exemplary.

he/she is trying to reach on the path towards the final
goal. Nonetheless, such subgoals can be accounted for
by the user input model. The user gaze model can then
be approximated as P (hk | gm ,xk).

In order to compute P (hk | gm ,xk), we note that
the field of view of human vision is typically divided
into an inner (i.e. foveal vision) and an outer (i.e.
peripheral vision) part. The foveal vision corresponds
to the sight area which maps on the central part of the
retina with the highest receptor density and highest
visual resolution. Thus, for sharp vision, one has to
align the eyes/head to look directly at the point of
interest. The peripheral vision, on the other hand
corresponds to the remaining area of the visible field
of view with lower resolution.

Inspired by these characteristics of the human
vision system, we define two regions for the focus of
attention. An inner region that is defined by the
two angles ε0 and δ0, which respectively determine
the horizontal and vertical openings around the gaze
direction, as depicted in Fig. 5. Similarly, the outer
region can be determined by the angles ε1 and δ1.
With these assumptions, target goals are classified
into three categories at any time instant k, according
to their position with respect to the two regions of
attentional focus, i.e. in the inner or outer region or
out of sight. By conforming transformation, the goal
locations (ignoring their relative orientation, i.e. θm )
can be defined with respect to the moving gaze frame
as

gm H = TH
W · gm W , (4)

where TH
W denotes the transformation matrix from

the fixed world frame (W ) to the moving gaze frame

x

y

z

ε0

ε1 δ0

δ1

Figure 5: The inner and outer spatial regions of
attentional focus are shown with respect to the
coordinates system of the moving gaze frame.

(H).
Consequently, three conditions need to be fulfilled

for a goal m to be assigned to the inner region. These
are

xm H > 0 (5)

atan( ym H , xm H) < ε0 (6)

atan( zm H , xm H) < δ0 (7)

where xm H , ym H and zm H are the x, y and z
components of the goal location in the moving gaze
frame (H). Similar conditions can be derived for the
outer region using the limiting angles ε1 and δ1.

Based on our assumption that users occasionally
bring their goals into their field of view, we consider
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the gaze mode as

P (hk | xk, gm ) ∝


a if gm lies within inner fov

b if gm lies within outer fov

c otherwise,

(8)

where a > b > c > 0 are constants to be chosen at
design time.

4.2.3. Plans Evolution Model
The path plans evolution model denoted by P ( i1:n

k |
gm , u0:k−1,h0:k−1, i1:n

0:k−1) defines the likelihood that
the robot currently has the path plans i1:n

k given
that the user has gm in mind, and the sequences
of issued commands and gaze points and all path
plans previously computed for all goals up to time
instant k − 1. Assuming that the plans i1:n

k are
conditionally independent of the previously issued
commands and gaze points given previous path plans
and the target goal, the path evolution model reduces
to P ( i1:n

k | gm , i1:n
0:k−1). Despite this simplification,

the computation of this model remains a bit tricky
as it involves all plans computed to all end goals
up to time instant k. In the following, a series of
approximations allow to arrive at a reasonably simple
model. Hereby, we consider first the path plan length,
i.e. ( lm

k), as an approximate sufficient statistic of
the plan im

k. This yields P ( l1:n
k | gm , l1:n

0:k−1) as
an approximation of the plan evolution model, where
l1:n
k denotes the path plan lengths to all goals at time

instant k. With this approximate statistic, only the
lengths of the plans, rather than the complete path
plans, need to be stored in memory in order to compute
the score of the plans evolution model. With further
simplification, the memory requirements are reduced
to a single value. Fig. 6 shows a simple example with
three different goals, and the evolution of their path
plans. At each time instant k, the current and previous
path plans are used to reason about the possible target
goals.

As a heuristic estimate of the plan evolution
model, we use the relative changes in path lengths
returned by the path planner at each update to capture
special trends towards (or away from) one (or more)

end goals. Formally, we define ∆ lm
k =

lm
k− lm

k−1

lm
k+C as

the relative difference in length at time k for goal m,
where division by zero is mitigated by the constant
C ∈ R+. Dividing by the current path length assures
that closer goals are favored over farther ones. To
account for path length differences further back in
time, a weighted moving average over ∆ lm

k denoted by

∆ l̃m
k is adopted and computed with ∆ l̃m

k = α∆ lm
k +

(1−α)∆ l̃m
k−1, where 0 < α < 1 is a forgetting factor,

and ∆ lm
1 = ∆ l̃m

1 = 0 for all m since x0 = x1.

g1

g2

g3

i1 1

i1 2

i1 3

i2 1

i2 2

i2 3

i3 1

i3 2

i3 3

x1

x2

x3

Figure 6: A simple example showing the evolution
of trajectories towards three target goals. The plan
evolution model assigns more scores to the goals whose
record so far shows a trend of approach (e.g. g1 in the
figure since l1 3 < l1 2 < l1 1).

The values of ∆ l̃m
k summarize approach (and

depart) trends with respect to the different target goals
in the environment, and thereby the plan evolution
score can be approximated with

P ( l1:n
k | gm , l1:n

0:k−1) ∝ f(∆ l̃m
k), (9)

where only the sequence of path plans towards goal
m are used to compute f(∆ l̃m

k). This is rather a
simplification, but given that P ( l1:n

k | gm , l1:n
0:k−1)

needs to be computed for all goals in the environment,
all available information from the computed path plans
will be made use of. The function f(∆ l̃m

k) is defined
as

f(∆ l̃m
k) = β1 ·

1− 1

exp
(
−β2 ·∆ l̃m

k

)
+ 1

+ β3,

(10)

where the parameters β1, β2 and β3 to be chosen at
design time.

Intuitively, the score function in (10) favors goals
whose new plans are shorter than the previously
computed and among those, favors the closer end goals
to the farther ones.

4.2.4. GR in Noisy Interfaces
For noisy interfaces, the recognizer does not have ac-
cess to the true user command uk, but rather to a noisy
version ûk thereof. Using the law of total probability,
the update rule can be modified, similar to [31], to
account for the partially observable user input in the
following manner:
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Pk( gm | û0:k,h0:k, i1:n
0:k)

=
∑

u1:k∈Uk

Pk( gm | u0:k, û0:k,h0:k, i1:n
0:k) · P (u0:k | û0:k,h0:k, i1:n

0:k)

(1)
=

∑
u1:k∈Uk

Pk( gm | u0:k,h0:k, i1:n
0:k) · P (u0:k | û0:k)

(2)
=

∑
u1:k∈Uk

Pk( gm | u0:k,h0:k, i1:n
0:k) ·

i=k∏
i=1

P (ui | ûi)

(11)

The first simplification (1) is based on the assump-
tion that u0:k is conditionally independent of h0:k and

i1:n
0:k given û0:k. On the other hand, (2) is based on

the assumption that consequent user commands are
independent of each other and only depend on the cur-
rent noisy measure thereof.

The formulation in (11) means that the recognizer
should keep a record of all possible hypotheses about
the user input which can be traced back to the first
observation received, i.e. û1. The number of these
hypotheses, however, grows exponentially with k, i.e.
|U|k. Therefore, in this work, we limit tracing these
hypotheses to the last issued command only, which
implies that the uncertainty about each command is
only accounted for once. In case of SSVEP-based
interaction, the probabilities P (ui | ûi) are obtained
from the interface confusion matrix which can be
computed from a short training session as shown
in [36]. Hereby, (11) also includes the possibility that
the BCI issues a command while the user wants to be in
the idle state (i.e. NOOP command). However, this is
taken into consideration only in updating the posterior
of the belief vector. The wrongly classified commands
during the idle state propagate to the execution phase.

4.2.5. Asynchronous Posterior Updates
In absence of any additional information, e.g. user
navigation preferences, the system starts with P0 =
[1/n, · · · 1/n]. The update rule in (3) can be triggered
either by the arrival of a user command or a new gaze
point at the time instant k. Obviously, both triggers
arrive in an asynchronous manner, and the probability
that both will arrive exactly at the same time can be
neglected. It is possible here for example to wait for
the availability of the two signals to trigger the update
synchronously. However, in this case many useful
information, from which the recognizer can benefit will
be lost. The other possibility is to trigger the update
with every new information observed about the user.
Consequently, the user input model contribution to the
posterior in (3) will be ignored in case of gaze-based
trigger, and the user gaze model contribution will be
ignored when a new user command arrives.

In case of updates triggered by new user com-
mands, a multiplication of the user input probability,
the plan evolution probability and the prior followed

by a normalization step yields the posterior. Since
the path evolution model is independent of the user
command which triggers the update, we compute its
contribution every time the robot state x changes in
order to react as quickly as possible to the arrival of
user commands. In the case of SSVEP-based interac-
tion, uncertainty in user commands is accounted for
with the formula in (11). Gaze-triggered updates are
computed in a similar manner.

5. Experimental Evaluation

In order to empirically evaluate the Bayesian frame-
work from Sec. 4, experiments were conducted with
healthy subjects with a real and a simulated robot.
This study is part of a larger project, which is approved
by the Ethics Committee of the Faculty of Medicine of
the Technical University of Munich (TUM).

Hereby, the performance of the GR framework is
directly evaluated as the fraction of instances, at which
the recognizer is able to correctly estimate the hidden
user goals, while users navigate towards different goals
in the remote environment. However, the predictions
of the GR (i.e. the belief vectors) remain useless
unless they are used in a way or another to improve
interaction. Therefore, we adopted a shared control
(SC) application of the belief vector, whereby when
the GR module becomes confident about its belief,
online modulation of the translational and rotational
steps is performed so that the robot gets closer to
high probable goals. The integration of an unobtrusive
SC with a reliable GR system is expected to reduce
the number of user commands required to accomplish
navigation tasks. This way, the shared control (SC)
application can provide indirect measure of the GR
method reliability. Formally, the step modulation is
obtained with

x =

{
xdefault if s < sthresh

s · xopt + (1− s) · xdefault if s ≥ sthresh,
(12)

where xdefault is the default translational (δddef) or
rotational steps (δθdef), s ∈ [0, 1] is the modulation
factor and xopt is chosen in a way so that the robot
gets more attracted to the goals with the highest
belief scores. Furthermore, we define sthresh as a
threshold, below which online parameters modulation
is disabled. The modulation factor is chosen here to be
the confidence of the GR module in its belief, for which
we propose a new metric, see Appendix A. Further
details about the computation of δdopt and δθopt can
be found in Appendix B and Appendix C.
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5.1. Hypotheses

Based on the characteristics of the Bayesian inference
system, we have formulated the following hypotheses.
First, the integration of SC exploiting command-
triggered updates of the GR into the robotic system
is expected to result in a fewer number of user
commands when compared to the situation when SC
is disabled (H1). Second, the incorporation of gaze
information, in addition to user commands, into the
GR system should produce more accurate estimates
about the hidden goals and consequently should result
in a fewer number of user commands when SC is
enabled (H2) compared to the case when the gaze
information is not made use of in the GR system.
Third, we expect the GR system, though mostly
designed with 2D path planning for 2D navigation
commands, to generalize to flat floor 3D environments,
but perhaps with reduced performance. On this
account, we hypothesize that comparable results, in
terms of user commands required to accomplish the
assigned tasks, are obtained in experiments within a
3D physical environment and a 2D simulated version
thereof (H3). Fourth, BCIs typically require higher
number of user commands in different application
domains when compared to deterministic interfaces
like keyboards. We hypothesize that the magnitude
of reduction in user commands that results from the
incorporation of GR into SC should differ between the
keyboard and the non-deterministic BCIs (H4).

5.2. Conditions and Experimental Design

The experiments required that subjects drive a robot in
a remote physical and a simulated environment and to
visit a predefined subset of goal locations within these
environments. We have varied the experimental setup
within three factors:

(i) The type of the robot/environment used (RBT ):
simulated 2D (S) or physical 3D (P ).

(ii) The type of the interface (INTFC): keyboard
(K) vs. SSVEP-based BCI (B).

(iii) The type of the GR-SC (SCTRL): GR is based on
user commands only with SC not activated (L1),
SC is applied on the basis of command-triggered
belief updates only (L2) or SC on the basis of
command and gaze-triggered belief updates (L3).

A fully crossed design was not feasible, since the
gaze (estimated with the head orientation as will be
explained later) cannot be incorporated within the
GR system for the 2D simulated robot/environment.
Fig. 7 visualizes the resulting factorial design with the
black cells referring to the infeasible conditions. The
following subsections provide more details about the
implementation of the different conditions.

L1 L2 L3

K 1 2

B 3 4

L1 L2 L3

K 5 6 7

B 8 9 10

Simulated environment (S) Physical environment(P)

Figure 7: Experimental factorial design consisting
of 10 different experimental conditions. Black cells
correspond to infeasible conditions.

RGB camera

3DOF neck

7DoF arm

SICK S300 safety
laser scanner

Emotional head

Kinect

Processing computers
and electronices

Gripper

Pressure-sensitive
safety bumpers

Mobile base

Figure 8: The robot avatar. The labels shown in gray
indicate robot parts irrelevant to the scope of this work.

5.3. Experimental Setup

5.3.1. Physical Robot: Fig. 8 shows the robot avatar
used in the physical robot conditions (P ). The robot
has two 7 DoFs arms with a human-like reachable
working space for manipulation and a non-holonomic
omnidirectional mobile base with rectangular footprint
(dimensioned 68 cm × 82 cm) that consists of four
wheels. For safety consideration, the mobile base is
enclosed with a pressure sensitive bumper, which halts
the robot immediately once it makes any contact with
any rigid body. Additionally, a pan-tilt-roll unit is
mounted onto the torso of the robot and serves as a
3 DoFs neck, where an emotional head is attached.
Two RGB cameras (Point Grey, Richmond, Canada)
serve as the eyes of the robot. Furthermore, two
SICK S300 laser scanners (Waldkirch, Germany) are
mounted on two opposite corners of the base to provide
a 360◦ view and used for obstacle detection. However,
since the scanners are static, they only can detect
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obstacles in the 2D plane parallel to the floor plane
(which is assumed to be a flat surface) and having a
distance d = 10 cm to it. A Kinect (Microsoft, USA)
camera is fixed to the robot’s chest, which is typically
used in manipulation tasks to detect objects in front
of the robot. Processing is done with two computers
running Ubuntu 12.04 with real-time kernel patch. The
Robot Operating System (ROS) [37] is used as the
default interprocess communication infrastructure.

During the experiments, the robot received incre-
mental commands from the user that define the direc-
tion of translation or rotation only. These commands
were translated in turn into linear and angular velocity
commands which the low-level controller of the mobile
base can understand. The linear velocity is denoted
by ν = [νx, νy]T and the angular velocity by ω, which
were assigned the default values: νx = νy = ±0.25 m/s
and ω = ±0.25 rad/s. The reason we chose such slow
speeds is to keep a lower rate of optical flow in the
visual feedback, which is known to be correlated with
cybersickness [38]. A position controller, which con-
tinuously received the robot’s location, made sure that
the robot moved according to the received translation
and rotations steps defined. The navigation stack from
ROS was used for path planning and the AMCL ROS
package [39] for robot’s localization.

5.3.2. Simulated Robot: For simulated robot
conditions (S), a 2D simulated version of the physical
robot was constructed using stage simulator package
in ROS [40]. Hereby, only the hardware components
which are related to navigation were simulated, namely
the robot body, the mobile base and the laser scanners.

5.3.3. Collision Avoidance Mode: The collision
avoidance behavior is realized with a velocity filter,
whereby if the distance from the robot’s body to
the closest obstacle in the direction of travel (r) gets
less than a predefined threshold rsafe, the incoming
velocity commands undergo a reduction before they
get delivered to the low-level controller (i.e. the robot
slows down). The actual reduction is determined in
proportion to the observed distance. If the distance
to the closest obstacle in the direction of travel
becomes equal to a second predefined threshold 0 <
rstop < rsafe, the robot halts and any further velocity
commands which might lead the robot closer to this
obstacle will be filtered out and blocked. Consequently,
this means that the robot always keeps at least rstop
distance to the closest obstacle. The default values
are set to rstop = 0.3 m and rsafe = 0.6 m during all
experiments. For a wide range of applications, these
values for rstop and rsafe seem reasonable, but they can
be tuned online as well, if it is required that the robot
gets closer to a specific obstacle (or rather a possible

target), e.g. to perform some manipulation tasks on
objects located on top of a table.

5.3.4. User Interface: The robot avatar was
embedded in a remote physical or a simulated
environment and received teleoperation commands
from the user who conveyed his/her commands to
the system with a chosen interface, namely with
an SSVEP-based BCI (B) or a keyboard (K).
During physical robot operation, subjects received a
continuous 3D stereoscopic video stream from the ego-
perspective of the robot avatar, which they viewed with
the help of a head-mounted display (HMD) weighting
380 gram (Oculus VR, United States). Additionally,
the user’s head movement was continuously tracked,
via the built-in head tracker available in the HMD, and
transmitted to the robot side to be mapped into similar
movements at the robot’s neck. In the simulated
environment conditions, the environment was shown
on an LCD monitor. In the BCI conditions, visual
stimuli were presented overlaid on the received video
stream or the simulated environment, as can be seen
in Figs. 9 and 10. The temporal resolution of the
SSVEP-based interaction depends on the size of the
EEG segment used for classifying user’s commands and
the level of overlap between two consecutive segments
as has been pointed out in [36]. The segment size
and the temporal resolution were respectively set by
default to 2 and 0.25 s. The interaction rate of the
BCI (4 Hz) was chosen higher than that of the control
loop (e.g. a translational command takes on average
1 s), as it was also important to provide continuous
visual feedback about the performance of the interface,
so that users could better predict the responsiveness
of the interface. This rate mismatch was more
pronounced for the keyboard-based interaction, and
therefore user commands which arrived while the robot
was moving were completely ignored by the interface
unless they were meant to stop the robot. The
SSVEP detection was based on the supervised CVARS
algorithm [36].

Whereas keyboard interfaces potentially can
provide a large set of commands using single buttons or
combinations thereof, SSVEP-BCIs can only provide a
limited set of commands. This is mainly due to the
immersive nature of the application which necessitates
that SSVEP stimuli to be shown overlaid on the video-
stream received from the remote robot. The more
stimuli are shown for display, the less will be the
quality of the visual feedback. As a sensible trade-
off, we fixed the number of possible commands to 4.
By default, the commands move forward, turn left,
turn right and stop are available to users. These
commands, to which we will refer as normal mode
commands, were chosen as they allow for human-
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like navigation around and in the direction of the
symmetry plane. Naturally, backward and sideways
movements are the exceptions, not the norm [41]. In
situations where the robot receives a command which
gets completely blocked as to avoid collisions, the set
of user commands gets automatically replaced by a
second set that includes move backward, move right,
and move left. The set of the new commands is referred
to as the recovery mode commands. Most if not all
the time, the recovery commands will be sufficient to
bring the robot to a free space, where the normal
mode of operation can be resumed by the user through
a dedicated interface element. Adaptations to the
interface were accompanied by an auditory feedback
that produced the speech of “normal mode commands”
or “recovery mode commands”, signaling the interface
change to subjects.

5.3.5. Extraction of Gaze Direction: Typically,
humans adjust their gaze by moving both their head
(or more precisely the neck) and eyes in order to bring
the focus of attention to the spatial regions of interest
around them. Specific to our immersive embodiment
application, the user’s eye movement might not be
spontaneous all the time, as it is the case in natural
settings. In SSVEP-based interaction in particular,
users overtly attend to one of the stimuli distributed
at the sides of the display when they decide to issue
a control command. Therefore, the user’s focus of
attention in this work is estimated based on the head
orientation only. This simplification is supported by
the results in [42], which show that the head orientation
contributes 70% to the overall gaze direction on average
and that head orientation data alone is sufficient to
accurately estimate the focus of attention.

The gaze movements of a user observing a scene
can be, for the sake of simplicity, broadly separated
into two classes. The first is characterized by sudden
and rapid gaze movements known as saccades, and the
second is characterized by a relative stability of the
gaze for typically 200-600 ms [43] and is referred to as
fixations. Ignoring the contribution of eye movements
to gaze direction implies that fixations in this work are
approximated by the steady head orientations which
last for a certain amount of time, i.e. fixations of the
head rather than the gaze.

At the technical level, we define the gaze frame
(H) as a moving coordinate system, whose origin is
positioned at the midpoint between the robot’s eyes,
x-axis is aligned with the gaze direction and z-axis
parallel to the robot’s face plane and pointing upwards,
i.e. from the neck to the forehead. In the following, we
limit the tracking data to the yaw (Θ) and pitch (Φ)
angles of head rotations, as the roll component, i.e. the
head rotation around the axis of view, hardly affects

Forward

turnL

stop

turnR

Forward

turnL

stop

turnR

(a) Normal mode commands

Menu1

moveL

Back

moveR

Menu1

moveL

Back

moveR

(b) Recovery mode commands

Figure 9: SSVEP stimuli overlaid on stereoscopic
images coming from the remote physical environment.
Recognized user commands are typically highlighted
in green. The “Menu1” command in recovery mode
resumes the normal mode commands. The scene shows
an example target location, where a glass bottle can be
observed behind the AR marker (which is highlighted
in the figure with green). Part of the robot base
is visible at the bottom side of the images. The
visible lens barrel distortion (at the capturing side) is
counteracted by the HMD which magnifies the images
it receives (i.e. pincushion distortion).

the actual gaze direction.
In order to extract the gaze information from the

raw head tracking data, we adopt a two-stage filter,
to which we will refer as the gaze filter. In the first
stage, fixation points are extracted from the head
tracking data as the sample mean of consecutive yaw-
pitch pairs, during which the head movements do not
exceed a certain velocity threshold for a period of e.g.
t = 200 ms. This stage is very similar to the I-VT
filter algorithm used to classify eye movements [44].
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Figure 10: Simulated environment with SSVEP stimuli
overlaid at the sides of the display. The stimuli
constellation allows for intuitive interaction.

In the second stage, the sample mean of the incoming
classified fixations in the yaw-pitch plane is recursively
computed to determine the sample gaze mean [Θ̄, Φ̄].
The newly incoming fixations continuously update the
old sample mean as long as their Euclidean distance to
the current mean is below a certain threshold denoted
by dthresh. Otherwise, i.e. if the distance is larger than
dthresh, the sample mean is set to the new fixation,
as shown in Fig. 11. Every time the sample mean is
set anew, it gets broadcasted as a new gaze point, i.e.
hk = [Θ̄k, Φ̄k]T . With the help of this information
and the available transformation tree to the system,
the transformation from the fixed world frame (W ) to
the moving gaze frame (H), i.e. TH

W , can be easily
computed.

Φ̄k

Θ̄kΘ̄k−1

Φ̄k−1

Φ

Θ

d
thresh

fnew

Figure 11: Mean gaze estimation from incoming
fixation points (indicated as black crosses). When a
new fixation is received, its distance to the old mean is
checked against dthresh and the new mean [Θ̄k, Φ̄k] is
computed accordingly either by updating the old mean
[Θ̄k−1, Φ̄k−1], or by setting the mean to the new value.

5.3.6. Goal Recognition and Shared Control:
The GR module was active in all conditions, but
its computed belief vectors were used to modulate
the translational and rotational steps only in the
conditions L2 and L3. The default translational
and rotational steps were respectively set to δddef =
±0.25 m/command and δθdef = ±π/12 rad/command.
In conditions L2 and L3, the translational steps were
modulated if s(Pk) > 0.3, whereas a more conservative
threshold was chosen to modulate the rotational steps,
i.e. s(Pk) > 0.8.

The recovery mode and stop commands were
excluded from the user input model as they are not
typically oriented towards the final goal but rather
dictated by the presence of obstacles in the robot’s
surroundings. In some cases, users might need
to recede away from a goal in order to avoid the
immediate obstacles. For the user input model of
forward commands, the inner and mid opening angles
were respectively set to π/4 rad and 5π/12 rad. The
corresponding scores for normal mode commands were
chosen as defined in Fig. 4 and the parameter dsubgoal
was set to 1.5 m.

The user gaze model was defined with the
parameters ε0 = δ0 = 0.1 rad, ε1 = δ1 = 0.2 rad,
a = 1, b = 0.9 and c = 0.8. The parameters of the plan
evolution model were set as follows: α = β1 = 0.8,
β2 = 10 and β3 = 0.2, rendering sm

k ∈ [0.2, 1] ∀m, k.
Fig. 12 shows a block diagram of the whole robotic

embodiment system for navigation which highlights the
interconnections and message passing between the GR
and SC blocks with other components.

5.4. Subjects

A total of 22 healthy adults (5 females) aged 27.59 ±
5.66 (range 20−38) with normal or corrected-to-normal
vision served as paid volunteer subjects in this study.

5.5. Task

A 2D occupancy grid of the physical 3D remote
environment (a cluttered laboratory space, with many
desks, tables and other robots) was built using a laser-
based SLAM algorithm available in ROS, i.e. the
gmapping package [45]. In total, 16 different goals
were manually defined on the map, e.g. at the lab
doors and other salient spots like desks, and were
additionally marked in the physical environment with
augmented reality (AR) markers. The occupancy grid
of the environment and the set of all goals are shown
in Fig. 13. The same occupancy grid was used to
build a simulated environment with the stage simulator
package in ROS [40].

Participants were instructed to accomplish the
same navigational task in all conditions as fast as
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Figure 12: System block diagram. This work focuses on the blocks in the shaded area.

possible. The task was to drive the robot with the
chosen interface and visit 4 target goals out of the
available 16, where the different subjects were assigned
different sets of goals. Participants were free to decide
the order, in which they might visit the target goals,
but they were instructed to stick to the same order
in all yet-to-be-performed sessions. Since the target
goals were unfamiliar to the participants, exactly as
the non-target ones, glass bottles were placed besides
the AR markers of the target goals (on target desks
or tables) to allow the participants to recognize them
from afar, especially if neighboring goals were very
close. A sample screenshot from the ego-perspective
of the robot in front of a target goal is shown in
Fig. 9. Since doors have less ambiguity, they were
only marked with the AR markers. Additionally, in
the simulated environment, target goals were colored
in red whereas the remaining ones were marked in
green. The simulated environment for subject S1
is shown as an example in Fig. 10. A goal was
considered reached if its distance to the robot became
less than or equal to 0.8 m and its relative orientation
with respect to the robot’s heading was less than or
equal to 0.5 rad. Additionally, the goal had to be
positioned within the range[−0.2, 0.2] m with respect
to the y-coordinate of the robot’s frame. Subjects were
instructed simply to bring the robot to face each of the
assigned goals. An auditory feedback signal was played
back to participants when the robot arrived at any goal
location. This way, we guaranteed that participants
did not recede from a goal earlier (assuming they
arrived) or later (assuming they did not arrive yet)

Figure 13: The environmental map was built using
laser-based SLAM. The 2D poses of the 16 goals are
shown, with respect to the world frame.

than they should.

5.6. Procedure

Upon their arrival at the laboratory, subjects were
provided in written form, all information they needed
about the course of the experiment and the different
conditions they were going to perform. All participants
gave their written informed consent. Participants
were additionally asked to fill in a pre-questionnaire
to collect some demographical data. They were
additionally given a printed floor plan of the remote
environment and were asked to decide upon the order
in which they wanted to traverse the subset of goals
consistently across conditions.

Each participant was assigned 1 session per
condition and 10 sessions in total. The order
of the experimental conditions was counterbalanced
across subjects, where half of the participants were
assigned to complete all simulated robot conditions
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first, and the other half were assigned the physical
robot conditions first. The experimental conditions
were not fully randomized as switching back and
forth between the simulated and the physical robot
conditions involves adding significant time overhead
to the already lengthy procedures. If a subject was
found to spend relatively long time (i.e. around
3 min) trying to reach the first end goal in the BCI
conditions, these sessions were stopped since otherwise
experiments might have extended over uncomfortable
time lengths to participants, let alone the effect of long
recordings on the quality of the EEG setup. Prior to
the actual experiments, participants were familiarized
with the different system components in the physical
and simulated environments, e.g. the head tracking
and mapping to the robot’s head movement, 3D visual
feedback and keyboard interface. In SSVEP-based
interaction conditions, electrode placement and setup
were done exactly as described in [36], and EEG
signals were acquired with a sampling rate of 256
Hz at full DC. Two SSVEP training sessions were
additionally collected during experiments with each
subject. One training session preceded the simulated
environment conditions with stimuli presented against
a dark screen on an LCD monitor and viewed
binocularly by the participants. The other session was
collected immediately before the physical environment
conditions. Stimuli in the latter case were presented
on the HMD against a static view from the remote
environment and were viewed binocularly. Training
data were used to learn two linear discriminant analysis
(LDA) classifiers for the CVARS scores as described
in [36], which were later used in online SSVEP-based
interaction conditions, i.e. conditions 3 and 4 for the
first classifier and 8, 9 and 10 for the second one.
The complete training sessions were used to train the
LDA classifiers but the classifier confusion matrix was
estimated with a 5-fold cross split of these sessions. To
elicit natural behavior, participants were not informed
about the existence of the recognizer or the fact
that online modulation of the system parameters
was active in some conditions. On the other hand,
participants were instructed to pay great attention to
auditory feedback signaling task completion after each
visited goal and signaling the automatic entry to the
recovery/normal modes of interaction. Again, when
the familiarization phase of an individual subject took
relatively long time, experiments were discontinued for
them, as the actual experiments were predicted thereby
to extend to longer times.

5.7. Performance Metrics

5.7.1. Direct Measures: Recall and precision metrics
are adopted as in [46–48] to provide direct evaluation
of our GR method. Recall is defined as the fraction

of belief updates which has the true user’s end goal
in the set of N -best predictions. Precision is defined
as the ratio of belief updates, in which the recognizer
is confident and the true goal is among the N -best
predictions, to the total number of belief updates, in
which the recognizer is confident. The recognizer’s
confidence is defined here, as in Appendix A, by
the non-uniformness metric of its belief vectors, i.e.
when s(Pk) > sthresh. Formally, let mP1:k =
{mP1,

mP2, . . .
mPk} be the sequence of belief updates

during which the true user’s hidden goal is gm , recall
and precision can be computed as follows

Recall =

∑k
i=1 IN (mPi)

k
,

Precision(st) =

∑k
i=1 IN (mPi) · IS(mPi)∑k

i=1 IS(mPi)
, (13)

where the indicator function IN (mPi) = 1 if the goal
m is among the N -best predictions and 0 otherwise
and the indicator function IS(mPi) = 1 if the non-
uniformness metric of the belief vector s(mPi) > st
and 0 otherwise. Recall and precision were computed
on the basis of the four belief sequences, that were
obtained per subject and per experimental condition.

5.7.2. Indirect Measures: As described earlier, the
performance of the GR module can be indirectly
evaluated by considering the effect of SC on the number
of commands issued to complete each task. Aiming
at generalizing our results with respect to the task
space, each subject was assigned a different set of
goals, and hence the observed number of commands per
condition and subject can be affected by the varying
complexity and path length of each sequence of goals.
In order to correct for this, a baseline was computed
for each sequence, relative to which the observed
number of commands can be computed. The baseline
is computed as the expected number of discrete normal
mode commands needed to visit these goals in the
same order which was undertaken by the individual
subjects, but assuming free space. Fig. 14 illustrates
the computation of the baseline number of commands
with a simple example.

6. Results

6.1. Task Completion

Experiments lasted for around 3 hours, including
the time for reading the instructions, familiarization,
training for SSVEPs, actual task performance and
breaks between conditions. Out of the 22 subjects,
12 subjects were able to complete all conditions. 2
subjects completed all conditions except the three
PB conditions, i.e. the physical robot with BCI
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Figure 14: Baseline computation example showing 4
different goal poses visited in the order g1 , g2 , g3 and
g4 starting from the initial pose x0. The baseline

number of commands is computed as
∑4

i=1 li+
∑j=8

j=1 θj

conditions. These two subjects, namely S1 and S3 were
the first to use the system, where at this stage of the
experiment, we recorded only one training session for
SSVEPs using the monitor stimulation. Since the PB
conditions require visual stimulation through the HMD
for online interaction, it has been observed with these
two subjects that the classifier learned for the monitor-
based stimulation could not generalize very well to the
HMD stimulation, and therefore we decided hereafter
to record another training session for the HMD
stimulation as described earlier in Sec. 5.5. We decided
to keep the incomplete data of these two subjects in our
data analysis since other conditions still compare to
the procedure used for other subjects. Additionally, 3
other subjects were able to complete all the keyboard
conditions, but none of the BCI’s, as the accuracies
for their SSVEP detection were relatively low. The
familiarization step took longer than expected with 4
subjects, and therefore experiments were discontinued
with them. 1 subject felt motion sickness during the
familiarization stage and decided to drop out.

6.2. Direct Measures

Fig. 15 shows an example of the belief vector Pk (in
condition PKL3 for subject S2) as it unfolds over time
during the complete session in the form of 16 staircase
plots. The rising and falling edges correspond to time
instances, at which the belief vector underwent gaze
or command-triggered updates. Upon arrival at any
goal, the belief vector is reset. Correspondingly, Fig. 16
shows the robot’s pose during the complete session.
These two figures combined can give a first insight
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Figure 16: The complete robot’s path xk for subject S2
in condition PKL3. Target goals are marked in red.
Additionally, points marked with cyan represent the
points (in time and space), at which the user received
the auditory signal signaling goal-reaching. All goals
in the environment are shown with their identification
numbers. The time in seconds is shown for some points
along the path, where t = 0 represents the time when
the session started.

about the performance of the Bayesian GR system.
Fig. 17 summarizes the results from all subjects

and all finished sessions with respect to the precision
and recall metrics introduced in Sec. 5.7, where
precision was evaluated for different values of sthresh.
The recall plots indicate that the recognizer was able
to correctly estimate the user’s hidden end goals as
the 1-best prediction around 40% of the time in all
experimental conditions. This rate increases with
increasing N , e.g. it becomes around 70% in the
case of 4-best predictions. On the other hand, the
increased precision observed with higher sthresh in
Fig. 17(b) indicates the suitability of our proposed non-
uniformness metric as a confidence measure for the
recognizer.

6.3. Indirect Measures

As previously mentioned, the relative number of
commands issued to complete the task is adopted as
the comparison criterion (i.e. the dependent variable)
using the indirect measures. Since this measure reflects
in a way the user’s effort needed to accomplish the
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Figure 17: Recall and precision of the GR module.
Around 40% of the time, the GR correctly estimated
the hidden user intention as the 1-best prediction.
From the precision plot, it can be seen the sthresh can
be used as a confidence metric.

assigned tasks, we will hereafter refer to it as the user
effort.

Our experiment in this study is a partially crossed
2 × 2 × 3 repeated-measures within-subjects factorial
design (with missing data). The fact that the
incorporation of gaze into the GR system is only
feasible in the physical robot conditions renders it
legitimate to run the analysis in two steps. Firstly, we
consider the fully crossed 2×2×2 design that excludes
the level (L3) in the factor SCTRL which leaves us
with the levels S/P , K/B and L1/L2 of the main
factors in the experiment. Secondly, we consider the L3
level within the fully crossed 2×3 design corresponding
to the K/B and L1/L2/L3 levels of the INTFC and
SCTRL main factors, respectively.

6.3.1. Statistical Analysis of the 2 × 2 × 2 Design
(RBT × INTFC × SCTRL)
The data obtained from all subjects and all sessions
(excluding L3 sessions) was analyzed using a linear
mixed-effects model, where the subject factor was
treated as a random factor, and the RBT , INTFC
and SCTRL were treated as fixed factors. To this end,
the function lmer from R lmerTest package ‡ was used
since it is able to handle unbalanced data, as it is the
case here, by approximating the denominator degrees
of freedom using either Satterthwaite’s or Kenward-
Roger’s approximations [49]. The three-way ANOVA
of type III shows no significance in the three way
interaction, F (1, 97.12) = 0.045, p = 0.83. However,
the two-way interaction terms of RBT × INTFC

‡ The complete analysis can be viewed in this link
http://rpubs.com/moh-marwan/rembodiment

http://rpubs.com/moh-marwan/rembodiment
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and INTFC × SCTRL are significant, respectively
with F (1, 97.97) = 4.68, p < 0.05 and F (1, 97.12) =
4.33, p < 0.05. The main factors INTFC and
SCTRL are found to be significant as well. Follow-
up simple effects tests are performed with the help of
multcomb [50] and lsmeans [51] packages. The results
are summarized in Figs. 18(a) and 18(b). Hereby,
the RBT is found non-significant across all levels of
INTFC, whereas the levels of INTFC are found to
be significantly different across the levels of RBT , as
can be seen in Fig. 18(a). Additionally, one can see in
Fig. 18(b) that all simple effects of INTFC×SCTRL
are significant, but with different significance levels and
therefore we can attribute the significant interaction to
these different levels of significance.

6.3.2. Statistical Analysis of the 2 × 3 Design
(INTFC × SCTRL)
The two-way ANOVA of type III tests reveals
significance for the two main factors, i.e. INTFC
and SCTRL, with no significant interaction. Post
hoc pairwise comparisons with Bonferroni corrections
reveal that the L2 required significantly less effort than
L1. There is also a trend that less user effort is required
in case of L3, but given our sample size this does
not reach significance. Conforming with the three-
way ANOVA from the previous subsection, the BCI
requires higher effort.

7. Discussion

Only 12 participants out of the 22 were able to
complete all the BCI experimental conditions. For
those who could not finish these conditions, it is
observed that their SSVEP-BCI accuracy was far
better than chance level, but lower than or very close
to the 70% limit. This value (i.e. 70%) is often used
to indicate the threshold, above which communication
or BCI control is still possible [52,53].

The precision and recall results have shown that
the GR system was able to infer the correct target
goals, as the best prediction, 40% of the time.
Comparing the L1 and L2 conditions show that a
small reduction in recall is observed, despite that
the goal recognition was exactly the same in the two
conditions. This can be explained by the fact that
SC is applied in L2, which yields a smaller number of
user commands and therefore less evidence about the
possible target goals is available to the goal recognition
module. The non-uniformness metric, i.e. s(Pk), was
shown additionally to be an adequate measure for the
confidence of the goal recognition module, as higher
values of s(Pk) resulted in higher precision of the goal
recognition module as can be seen in Fig. 17(b). The
Kullback-Leibler divergence is expected to produce
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Figure 18: Barplots of the least squares means and
95% confidence interval plotted for (a,b) the 2× 2× 3
design and (c) the 2× 3 design.

similar results as the non-uniformness metric, but we
chose the latter for its linearity with respect to the
number of goals that share the total probability as
shown in Appendix A.

Our statistical analysis, on the other hand, has
demonstrated that SC based on GR beliefs resulted
in less user effort compared to the case of direct user
command, i.e. when SC was disabled (H1).

Contrary to expectations, the incorporation of
gaze information into the GR module did not help to
enhance the performance of our GR-SC system (H2).
Several reasons might have contributed to this result.
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First, we have assumed a simple model for the user gaze
based on the hypothesis that users frequently fixate
their vision at the goal of interest to help update their
global plans. While this is true in general, the constant
time which we assumed in this work (i.e. 200 ms) for
head fixations seems not suitable to capture fixation
times realistically. Second, users tend to look more
often at the immediate vicinity of the robot for better
local trajectory planning. Therefore, we predict that
considering these details into the user gaze model in
future developments will be beneficial.

The results from the three-way ANOVA have
shown no significant difference between the simulated
(S) and the physical (P) robots/environments (H3).
This is indeed a desirable feature of simulation systems
as further developments in GR can be, if feasible,
tested first in simulation.

Additionally, it comes as no surprise that the BCI
resulted in higher user effort, with average increase of
around 30% compared to the keyboard. This is mainly
due to the imperfect detection of the SSVEP signals.
However, most of the participants were able to use the
system and accomplished relatively complex navigation
tasks during the different conditions. Subjects, for
which the SSVEP detection did not get over 70%
accuracy, encountered difficulties to accomplish the
task in the BCI conditions, and therefore, BCI sessions
were discontinued with them as has been previously
reported. With respect to the BCI inclusion in the
GR algorithm, Fig. 17(a) clearly shows that this did
harm the precision of the GR module. Importantly,
the effect of L2 shared control has been shown to be
more significant in the BCI sessions compared to the
keyboard case (H4), as can be seen in Fig. 18(a). This
also should come as no surprise since shared control
should have a larger effect for noisy interfaces.

Even when the GR module was highly confident
about its prediction, the correct target goal was some-
times confused with other goals in the environment.
The belief evolution plots for all subjects and condi-
tions show that such confusion happens most of the
time with adjacent goals. Therefore, the performance
of the GR module is expected to improve for envi-
ronments with less goal density. Reciprocally, with
a higher goal density, the performance of the system
might be negatively affected. The number of goals in
the environment per se is not expected to have a high
influence on the precision or recall, but will definitely
affect the processing speed. This is due to the fact that
the computation of the path plans to all goals, which
takes place at the end of each movement, constitutes
the processing bottleneck of the GR system. In order
to efficiently generalize to environments with higher
number of goals, and environments with higher goal
density, a hierarchical structure of target goals in the

environment might be of high benefit. Hereby, target
goals can be clustered, with respect to their distance
to each other, within different levels. GR can be then
applied to the goal hierarchy from the coarse to the
refined representation. In other words, recognition is
applied first between clusters, and then between the
goals within each cluster. Further investigation of this
approach is required.

Furthermore, online modulation of the system
parameters on the basis of the GR belief resulted in
an average reduction by a factor of 30% (for level
L2) in the total number of commands required to
accomplish the tasks. Given the observed precision
levels of the GR system shown in Fig. 17, more
proactive assistance can also be provided in further
developments to the system, e.g. to autonomously
maneuver the robot towards a goal, when the system
is highly confident about its predictions. This brings
us back to the autonomy continuum we discussed in
Sec. 2, where the belief vector lends itself as a plausible
criterion to automatically change the operational mode
of the robot and/or to trigger automatic interface
adaptations, whereby e.g. the most probable goals are
shown to users for selection.

During the experiments reported here, most
subjects had difficulties, which were also reported
verbally by some of them, to issue stop commands
as quickly as required in the BCI conditions. This
is due to the limiting factors of the buffering step in
the SSVEP detection method. Therefore, devising a
reliable way to stop the robot, e.g. with an EMG
channel [54], if feasible, might be necessary to ensure
that users can maintain supervisory control over the
actions of the robot.

We assumed throughout this work that the map of
the remote environment and the possible goal locations
are known a priori. If not available, this information
can be also learned throughout interaction with users.
For instance, states of interest (goals or sub-goals) were
extracted from successful task episodes based on the
averaged occurrence frequency in [55]. The map itself
is easily obtained with the SLAM algorithm, e.g. with
gmapping ROS package [45] which was used for the
purposes of this work.

We assumed additionally in this work that users,
at each time, have a specific end goal in mind. The
proposed GR module is expected to perform also
well in situations when users change the targeted
goal during movement. The reason for adopting
a keyhole approach in this work was primarily to
elicit natural behavior of users so that neglecting user
cooperation while evaluating the performance of the
GR-SC algorithms becomes legitimate. In this regard,
intended intention recognition approaches might be
appropriate for robotic embodiment systems as well.
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For instance, should the user become aware of gaze-
triggered belief updates about their end goals, users
might choose to fixate purposely at these goals for
extended periods of time, so that some ambiguity can
be resolved at the recognizer side.

Due to the length of our experiments, we were
not able to include another factor to test the effects
of self-adaptations to the SSVEP-based BCI, i.e.
the automatic update of the BCI recovery mode
commands. However, we argue that these adaptations
have played a major role in making the task easy to
complete and in keeping the number of interactions
required to complete the assigned tasks comparable
with the baseline. For instance, consider the scenario
where the robot is facing a desk where the target goal
is only some tens of centimeters away from the robot,
such that it is located in front and to the left of the
robot. With the normal mode commands only, the
user needs to convey several commands to arrive at the
goal, e.g. perform a half-turn, move forward, perform
a 90◦ turn, move forward, move for another 90◦ and
move forward. This sequence is also not guaranteed to
arrive at the goal location in case of BCIs. However,
with the adaptive interface, the target goal is only one
command away from the user (i.e. using the move left
command). This very advantage of the adaptive BCI
has been observed often during the experiments.

Throughout this work, we also assumed that the
localization module provided perfect estimates about
the robot’s location. Given the underlying probabilis-
tic nature of the AMCL ROS package that implements
the adaptive particle filter for localization [39], the esti-
mated robot’s pose is a noisy version of the true pose.
We expect that the localization noise affected all ex-
perimental conditions uniformly, and therefore its ef-
fect on the obtained results can be ignored. However,
future developments might benefit from taking the un-
certainty in the robot’s pose into consideration.

There are some technical details that we skipped
so far for the sake of not cluttering the board with
too many details that obscure the most relevant
issues to GR, but these details remain part of the
bigger picture of robotic embodiment. For instance,
the stereoscopic visual feedback provided to users in
the physical condition did not perfectly match direct
line-of-sight. Though the robot was equipped with
cameras that provide large field of view, the complete
FOV of humans was not reached. As a result, the
perceived distances through the visual channel did not
map one-to-one to real distances. Obviously, users
were able to learn the actual mapping as they could
navigate freely in the remote environment accordingly.
Furthermore, the requirements for real-time video
streaming necessitate compression and decompression
of captured images at the robot and the user side,

respectively. This leads to some compression artifacts
that reduce the quality of viewed video stream, which
is further reduced by the resolution of the used display,
i.e the HMD. Additionally, due to physical constraints,
the 3 DoFs neck of the robot did not exactly match
the range of human neck movement. As a result,
it has been observed during experiments, that such
mismatch often affected the user ability to explore the
environment. Improvements to such technical details
will undoubtedly contribute to improved quality of user
experience in robotic embodiment systems.

On a different vein, the length of the conducted
experiments did not allow us to additionally gather
questionnaire data about the subjective experience of
the different users after each experimental condition.
This data would otherwise have provided us with more
insights on how the several factors affect the level of
embodiment. For instance, in spite of the observed
non-significant difference between the simulated and
the physical conditions with respect to the required
user effort, the two conditions have fundamental
differences with respect to embodiment. This is due
to the fact that the simulated condition (S) requires
that the users observe the robot/environment from a
third person perspective (3PP), while in the physical
condition (P) the user has a first person perspective
(1PP). It is established in [56] that the user’s visual
perspective has a significant impact on the level of body
ownership and embodiment. Furthermore, modulating
the length of translational and rotational movements
may have as well affected the users’ sense of agency
and embodiment. As such, the possibility that these
discrepancies may have affected our results cannot be
excluded with absolute certainty.

8. Conclusions

It is argued in this work that adaptive BCIs offer a
way out of the bandwidth bottleneck in BCI-based
robotic applications. In order for BCI self-adaptations
to be effective, it is crucial to reason about the user
hidden intention. On this account, we have focused on
goal recognition within a specific robotic application,
namely navigation tasks in collision avoidance mode.
The proposed goal recognition module is based on
a recursive Bayesian update rule, for which some
simplifications are made by considering intuitive
heuristics that model the behavior of the general
population in the domain, and therefore can be used
in a plug-and-play fashion. The output of the goal
recognition system is a belief vector that assigns a
probability value to each possible target goal in the
environment. A novel metric that reflects the non-
uniformness of the belief vector was proposed to
estimate the confidence of the goal recognition module
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in its predictions.
In order to evaluate the proposed goal recognition

system, experiments were conducted with healthy
subjects within robotic embodiment settings. These
experiments varied along three factors: the type of
the robot/environment (simulated and physical), the
type of the interface (keyboard or BCI), and the way
goal recognition was used to guide a simple shared
control driving scheme. Our results have shown that
the proposed GR algorithm was able to track and infer
the hidden user goals with relatively high precision
and recall. Results have shown also that the simple
SC scheme could benefit from the output of the goal
recognition system and was able to reduce the user
effort needed to accomplish the assigned tasks, where
user effort was thought to be reflected in the number
of issued commands. Additionally, we found that there
was no significant difference in user effort between
the simulated and real environments, suggesting that
the simulated environment might be used in the test
phases of further developments to the goal recognition
algorithm. Despite the fact that BCI required higher
effort compared to the keyboard conditions, most
subjects were able to complete the assigned tasks, and
the proposed goal recognition system was additionally
shown able to handle the uncertainty in user input
during SSVEP-based interaction. The SC application
of the belief vector has shown that the benefit of the
goal recognition module was more pronounced for BCIs
than in the case of keyboard interfaces. On the other
hand, subjects, who had relatively low SSVEP signal-
to-noise ratio encountered considerable difficulties,
especially that frequent erroneous interactions give rise
to oscillatory behavior of the robot, where e.g. random
in-place rotations are very frequent. As a result,
corresponding BCI experiments were discontinued with
them since otherwise, experiments would have lasted
for uncomfortably long periods of time.

The collision avoidance mode was adopted in this
work since it allows to leave most of the control in the
hands of the user. Setting the collision avoidance as
the default operational mode within navigation tasks
brings other advantages. This mode allows the goal
recognition module to benefit from high rate of user
commands, on which inference can be based. In higher
autonomy modes of robot operation, where less user
input is available, other goal recognition methods are
required. Additionally, the obtained belief vector from
the goal recognition module can be used for other
purposes than the simple shared control application
presented in this work. For instance, it can be used as
a basis for interface self-adaptations. That is, when the
belief reaches high confidence regarding target goals,
the most probable goals can be e.g. shown to the user
for selection.

In summary, we have devised a recursive Bayesian
rule to infer and track the target goal locations pursued
by users while navigating in robotic embodiment
systems. Being based on different intuitive heuristics
and assuming that users typically exhibit similar
navigation behavior in structured environments, the
proposed method can be used without prior training
of system parameters to individual users. The output
of the goal recognition module lends itself as a plausible
criteria to guide more advanced shared control driving
schemes and strategies for interface self-adaptation.
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Appendix A. Belief Confidence

The belief vector is of great importance on its own, but
it is also necessary sometimes to have a metric that
summarizes the confidence of the GR in such beliefs.
To this end, we chose a novel metric (s) that reflects the
non-uniformness of the belief vector. The new metric
can be computed for any probability mass function
(like the belief vector) characterizing a random variable
X with n possible values, with the following steps:

(i) The probability masses are ordered in ascending
order, and the cumulative distribution function
(CDF) is computed.

(ii) The zeroth moment M0 and the first moment M1

of the CDF are computed with M0 =
∑

m cdf [m]
and M1 =

∑
mm · cdf [m].

(iii) The x-coordinate of the centroid of the CDF is
evaluated with c = M1/M0.

(iv) The non-uniformness metric is computed by
normalizing c in the range [0, 1] with s = (c −
cmin)/(cmax−cmin), where cmin = (2 ·n+1)/3 and
cmax = n.

The metric s is a function of the belief vector,
i.e. s(Pk) that ranges from 0 (for fully uniform
beliefs) to 1 (for unit mass beliefs). The values
of s can be considered as to reflect the recognizer’s
confidence about its belief, since the concentration
of probability at one mass point typically reflects
the accumulation of enough evidence about a specific
goal location. One desired feature of the new metric
is its linearity with respect to the number of goals
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Figure A1: The KL-divergence measure compared to
the non-uniformness metric.

that share the total probability. This is shown in
Fig. A1 comparing the non-uniformness metric of Ui
to Kullback-Leibler divergence KL(Ui‖Un), where Un
is the uniform assignment over the n possible values
of X, i.e. Un = [1/n, · · · , 1/n]T and Ui is the uniform
assignment of total probability over a subset i ≤ n
of the sample space, e.g. Ui = [1/2, 1/2, 0, · · · 0]T for
i = 2. In Fig. A1, the KL-divergence measure is
normalized with respect to the value KL(U1‖Un).

Appendix B. Optimal Translational Step

In order to compute the optimal translational step
when the recognizer is quite confident about its
belief, we model the different goals as different point
attractors on a 2D plane. Hereby, the different goals
(represented by their corresponding subgoals from the
user input model in Sec. 4.2.1) exert different forces
on the robot’s translational movement in proportion
to their squared probabilities, i.e. Pm

k
2.

We define δdopt as the minimizer of the energy
function

f(δd) =
1

2

∑
m

Pm
k
2 · ‖T (xk, δd)− gm

k‖22, (B.1)

where δd ∈ [0, δdmax] and T (xk, δd) defines the new
position of the robot after translating δd meters in the
direction of travel. The term ‖T (xk, δd) − gm

k‖2 can
be computed with

( xm
k − xk − δd cos(θk))2 + ( ym

k − yk − δd sin(θk))2,
(B.2)

where [ xm
k, ym

k]T denotes the position of the subgoal
m, and [xk, yk]T and θk, respectively denote the robot’s

g1 k = (1xk,
1yk)

g2 k = (2xk,
2yk)

1yk − yk

y

x

y

x

θk
1φk 1Pk

2Pk

SW
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2
x
k
−
x
k

Figure B1: An example illustrating the quantities used
in the computation of the optimal translational and
rotational steps. Computed subgoals on the path to the
different end goals often lie on a circle of radius dsubgoal.
The optimal steps are computed so as to minimize an
energy function determined by attraction forces of the
different goals. The angle 1φk = atan2( y1 k − yk, x1 k −
xk)

position and heading at time instant k. Intuitively,
minimizing the energy function in (B.1) minimizes
the squared distance to all goals jointly, where the
importance of each goal is weighted by its squared
probability. For instance, when all the probability is
concentrated on one goal (e.g. goal 2 in Fig. B1),
δdopt will be chosen so that it brings the robot very
close to its corresponding subgoal. However, it is
rare that IR converges to a point mass probability
vector Pk, and therefore the distance to all goals are
taken into consideration in the minimization of (B.1).
Noteworthy here is that the effectiveness of δdopt is
highly dependent on the accuracy of the Pk.

Since the energy function is defined such that it
has a single minimum, i.e.

∂2

∂x2
f(δd) =

N∑
m=1

Pm
k
2 > 0 ∀δd. (B.3)

Solving ∂
∂xf(δd) = 0, yields the following value of

δdopt,

δdopt =

∑n
m=1 Pm

k
2 · [( xm

k − xk) cos(θk) + ( ym
k − yk) sin(θk)]∑n

m=1 Pm
k
2

.

Appendix C. Optimal Rotational Step

Similarly, different goals apply different forces on the
robot’s rotational movements in proportion to their
squared probabilities. The optimal rotational step
δθopt ∈ [−π, π] is defined as the global minimizer of
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the energy function

f(δθ) =
1

2

∑
m

Pm
k
2 · (d(xk, gm

k)− δθ))2,

where d(xk, gm
k) is defined as{

atan2( ym
k − yk, xm

k − xk)− θk. if ‖xk − gm
k‖ ≥ dg

θm − θk if ‖xk − gm
k‖ < dg

where dg is a distance threshold, below which the robot
is assumed close to an end goal. Intuitively, this means
that when users get very close to specific goals, they are
more likely willing to align the robot with the heading
of that goal, or otherwise, they rather align the robot
to face the corresponding subgoals. The value of dg
is set to 0.5 m. The optimal rotational step can be
computed with

δθopt =

∑
m Pm

k
2 · d(xk, gm

k)∑
m Pm

k
2

. (C.1)
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