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ABSTRACT
Games with Common Coupled Constraints represent many
real life situations. In these games, if one player fails to
satisfy its constraints common to other players, then the
other players are also penalised. Therefore these games can
be viewed as being cooperative in goals related to meeting
the common constraints, and non cooperative in terms of
the utilities. We study in this paper the Tullock rent seeking
game with additional common coupled constraints. We have
succeded in showing that the utilities satisfy the property of
diagonal strict concavity (DSC), which can be viewed as
an extention of concavity to a game setting. It not only
guarantees the uniqueness of the Nash equilibrium but also
of the normalized equilibrium.

1. INTRODUCTION

Games with constraints have long been used for model-
ing and studying non-cooperative behavior in various areas.
This includes road traffic [7, 12] and telecommunications
[9]. Various types of constraints may appear in every day
game situations; the simplest consisting of orthogonal con-
straints, where the strategies of the players are restricted
independently of each other [15]. A second type of con-
straints are called Common Coupled Constraints (CCC) [3,
14, 15] in which all players have a common convex non-
orthogonal multi-strategy space. This model can be viewed
as constraints that are common to all users. A unilateral
deviation of a player from some feasible multi-strategy (one
that satisfies the constraints) to another strategy that is
feasible for that player, does not result, therefore, in the vi-
olation of constraints of other users. CCC have often been
used in telecommunications networking problems as well as
in power transfer over a smart grid, where capacity con-
straints of links are naturally common. Games with this
type of constraints are a special case of General Constrained
Games (GCG) [6], see also [3, 4, 5, 8, 10, 16].

In this paper we study the well known Tullock rent seeking
game with Common Coupled Constraints. This game de-
scribes contest over resources. Each player bids an amount
that she is ready to pay. She then pays an amount pro-
portional to her bid and receives in turn a payoff that is
proportional to her bid divided by the sum of bids of all
players.
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The presence of a capacity constraint results in infinitely
many equilibria and we are faced with a question of equilib-
rium selection. Using Kuhn Tucker conditions to the best
response, we can solve a relaxed game instead of the original
constrained game, which has however the same equilibria as
the original game. The Lagrange multipliers can be inter-
preted as a shadow cost that a manager sets in order to
guarantee that the equilibrium achieved satisfies the con-
straints. This approach may however be completey unscal-
able since KKT Theorem does not guarantee that the price
per resource unit is the same for all players. In fact, since
the Lagrange multipliers are obtained for the best response
function, they could depend not only on the player but also
on the policy of all other players, rending the approach even
less scalable. We are interested in finding such shadow cost
which is fixed per resource unit. Such an equilibrium along
with a fixed shadow price is called a normalized equilibrium.

The Tullock rent-seeking game has been used recently to
model and study several game phenomena in networking. It
was used to model contests over timelines in social netorks
for maximizing visibility [17]. Each player i controls the rate
λiai of a Poisson process of posts that player i sends into a
common timeline of length K. This rate is given by a basic
popularity rate λi times the acceleration effort (e.g. through
advertisement) given by ai. Using basic queueing theory, the
authors show that the stationary expected number of posts
in the timeline originating from player i is given by

K
λiai∑N

j=1 λjaj

This visibility measure is the payoff in Tullock’s model, while
the cost for acceleration at a rate ai is proportional to ai as
in Tullick’s model.

Another application of the Tullock rent seeking game is
in the study of contests between miners in blockchain [2].

A few words on rent seeking. According to Wikipedia, ”In
public choice theory and in economics, rent-seeking involves
seeking to increase one’s share of existing wealth without
creating new wealth. Rent-seeking results in reduced eco-
nomic efficiency through poor allocation of resources, re-
duced actual wealth-creation, lost government revenue, in-
creased income inequality, and (potentially) national de-
cline.”

Wikipedia further describes the origin of the idea: ”The
idea of rent-seeking was developed by Gordon Tullock in
1967, while the expression rent-seeking itself was coined in
1974 by Anne Krueger[11]. The word ”rent” does not re-
fer specifically to payment on a lease but rather to Adam



Smith’s division of incomes into profit, wage, and rent. The
origin of the term refers to gaining control of land or other
natural resources.”

Our first contribution is to show that the utilities satisfy
a property that extends concavity to games, and is called
Diagonally Strict Concavity. This is shown to imply the
existence and uniqueness of a normalized equilibrium. We
shall then show that this property further extends to the
case of contests over several resources.

2. A SINGLE RESOURCE

Consider an N players game. Player m bids a quantity
xm. We have minimum constraints xm ≥ ε for all m.

The payoff from this contest to player m is

Pm =
xm∑M
j=1 x

j
.

This comes at a cost of xmγ to player m where γ is a con-
stant. The utility for player m is thus

Um(x) =
xm∑M
j=1 x

j
− xmγ.

Theorem 1. (i) The utility of player m is concave in its
action and is continuous in the actions of other players.
(ii) For any strictly positive value of γ, the above game has
a unique Nash equilibrium in pure policies.

Proof. Direct calculation leads to (i). The existence then
directly follows from [15]. Uniqueness is established in [1],
see also [18]. Other related uniqueness results in the asym-
metric case can be foudn in [17, 19].

3. NORMALIZED EQUILIBRIUM

The games we have seen so far involved orthogonal con-
straints. By that we mean that the actions that a player can
use do not depend on the actions of other players. We next
introduce capacity constraint. We require that the following
holds for some contant V :

M∑
j=1

xj ≤ V (1)

Capacity constraints may represent physical bounds on
resources, such as bounded power, or resources that are
bounded by regulation. For example, legislation may im-
pose bounds on the power used or on the emission of CO2
by cars. With the additional capacity constraint, the Nash
equilibrium is no more unique and there may in fact be an
infinite number of equilibria. We call this the game with
capacity constraint.

Let y be an equilibrium in the above game and let y[−m]

denote the action vectors of all players other than m. By
KKT Theorem, since for each m, Um is concave in xm, there
is a Lagrange multiplier λm(y[−m] such that ym maximizes
the Lagrangian

Lm(xm) = Um(x, y[−m])− λm(y[−m])

(
Vk −

M∑
j=1

xj
)

and

λm(y[−m])

(
V −

M∑
j=1

xj
)

= 0

(complementarity property). We call the game with the
Lagrangians Lm replacing the utilities Um the relaxed game.

The Lagrange multipliers can be interpreted as shadow
prices: if a price is set on player m such that when other
players are at equilibrium, the player pays xmλm(y[−m]) for
its use of the capacity, then y is an equillibrium in the game
with capacity constraints. Yet this pricing is not scalable
since for the same use of the resources it may vary from user
to user and it further depends on the the chosen equilibrium.
For billing purposes one would prefer λm not to depend on
y nor on m, but to be a constant.

Does there exist a constant Lagrange multiplier λ inde-
pendent of strategies of the payers and of the idendity m of
the player, along with an associated equilibrium y for the
corresponding relaxed game? If the answer is positive then
y is called a normalized equilibrium [15].

Our goal is to establish the existence and uniquenesss of
the normalized equilibrium.

4. DIAGONAL STRICT CONCAVITY
For a vector of real nonnegative numbers r, define

σ(x, r) =

N∑
m=1

rmU
m(x)

g(x, r) =


r1

∂
∂x1

U1(x1, x−1)

r2
∂

∂x2
U2(x2, x−2)

...
rN

∂
∂xN

UN (xN , x−N )

 (2)

σ is called diagonally strict concave (DSC) for a given r if
for every distinct x0 and x1,

(x1 − x0)′g(x0, r) + (x0 − x1)′g(x1, r) > 0

Let G(x,r) be the Jacobian of g(x,r) with respect to x
and let Gi,j be ith row and jth column of G(x,r). Then
a sufficient condition for σ to be diagonally strict concave
for some r is that for all x, [G(x, r) + G′(x, r)] is negative
definite.

Our interest in diagonally strict concave utility functions
is due to the following properties of games possesing such
utilities.

Theorem 2. (Theorem 4 from [15]) Let σ be diagonally
strict concave for some r. Then there exists a unique nor-
malized equilibrium.

5. PROOF OF DSC

In this section we establish that the Tullock game with ca-
pacity constraint has a DSC structure and thus has a unique
normalized equilibrium.

In our case we have

g(x, r) =


r1x−1

Xr2x−2

X
...

rNx−N

X

 (3)



where X =
∑N

i=1 xi and x−m =
∑N

i=1,i 6=m xi

Gi,j =
∂

∂xj

(
∂

∂xi

rixi
X

)
(4)

ri
∂

∂xj

(x−i

X2

)
=

{
ri
−2xi
X3 if i = j

ri
xi−x−i

X3 if i 6= j
(5)

For [G+G′] consider

Gi,j +Gj,i =

{−4rix−i

X3 if i = j
ri(xi−x−i)+rj(xj−x−j)

X3 if i 6= j
(6)

[G+G′] is negative definite if A′ [G+G′]A < 0,∀A,A 6= 0
where A is the column vector

A =

a1...
aN


A′
[
G+G′

]
A = (7)

N∑
i=1

 N∑
j=1,j 6=i

aiaj
ri (xi − x−i) + rj (xj − x−j)

X3

− a2i 4rix−i

X3

We choose ri = 1 for all i. Then (7) equals −Z/X3 where
Z is given by

N∑
i=1

a2i 4x−i +

 N∑
j=1,j 6=i

aiaj ((x−i − xi) + (x−j − xj))


(8)

=

N∑
i=1

a2i 4 (X − xi) +

[
N∑
j>i

4aiaj (X − xi − xj)

]
(9)

=4

N∑
i=1

a2i (X − xi) +

[
N∑
j>i

aiaj (X − xi − xj)

]
(10)

=4

N∑
i=1

a2i N∑
j=1,j 6=i

xi +

N∑
j>i

aiaj

N∑
k=1,k 6=j,k 6=i

xk

 (11)

=

N∑
i=1

4xi

 N∑
j=1,j 6=i

a2j + aj

N∑
k>j,k 6=i

ak

 (12)

Now (12) is positive for any positive value of x and hence
[G’+G] matrix is negative definite.

6. SEVERAL RESOURCES

We consider next the following extension to the case of
K resources. Each player m of the M players has a budget
B(m) that he can invest by bidding xmk of resource k. The
following (orthogonal) constraint should hold:

K∑
k=1

xmk ≤ B(m).

The payoff for player m is the sum of payoffs in all K con-
tests, i.e.

Pm(x) =

K∑
k=1

Pm
k (xk)

where xk is the vector x1k, ..., x
M
k and where

Pm
k (xk) =

xmk∑M
j=1 x

j
k

.

and the cost of a contest k to player m is γ(k)xmk . Player
m’ s utility is thus

Um(x) =

K∑
k=1

(
xmk∑M
j=1 x

j
k

− γkxmk

)
For the study of such games, see [17].

We next define capacity constraint on each of the K re-
sources. Let V be the column vector with the kth entry
being a constant Vk. We then require for each k that

N∑
m=1

xmk ≤ Vk

Note that when applying KKT conditions to the best re-
sponse at equilibrium, we shall have K Lagrange multiply-
ers. We wish to find a vector of K Lagrange multiplyers
that do not depend on the player nor on the policy of other
players, such that the Nash equilibrium for the relaxed game
will be an equilibrium for the original constrained game and
in particular the constraints would be met and would satisfy
the complentarity conditions. This is the vector version of
a normalized equilibrium.

According to Theorem 4 of Rosen [15], we have to show
that the set of utilities is diagonally strict concave in order
to have existence and uniqueness of the normalized equilib-
rium. The latter follows from the fact that DSC holds for
each resource separately and then apply the proof of Corol-
lary 2 in [13].

7. CONCLUSIONS AND FUTURE WORK

We have shown that the utilities in the Tullock game
are strict diagonal concave. This allows to conclude using
Rosen’s result that in absence of common correlated con-
straints, the Nash equilibrium exists and is unique, while
in presence of such constraints, the normalized equilibrium
exists in pure strategies and is unique. Note that while the
statements on the Nash equilibrium have already been avail-
able in [1] which proposed an extension to the DSC property,
that reference does provide tools to handle the normalized
equilibrium.

Another advantage from the derivation of the DSC struc-
ture is that one can use dynamic distributed algorithms to
converge to the normalized equilibrium and convergence is
guaranteed under DSC, see [15].
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