57 research outputs found

    Non-Article III Adjudication: Bankruptcy and Nonbankruptcy, With and Without Litigant Consent

    Get PDF
    This Article analyzes the Supreme Court\u27s 2015 decision in Wellness International Network, Ltd. v. Sharif. In upholding the constitutionality of non-Article III bankruptcy adjudications with litigant consent, Wellness resolved an important issue raised by the Court\u27s momentous 2011 Stern v. Marshall decision. The Wellness opinion, though, has more profound implications for the constitutionality of non-Article III adjudications, both bankruptcy and nonbankruptcy, whether those non-Article III adjudications are conducted with or without litigant consent. Beyond the bankruptcy context, Wellness reveals a general Supreme Court jurisprudence with a bifurcated analytical methodology that facilitates a complex interaction between the waivable personal and non-waivable structural interests protected by Article III, § 1. In the bankruptcy context, Wellness provides further evidence that the Court is, over a long run of decisions, simply confirming the constitutional significance of its extensive summary-plenary jurisprudence as the operative constitutional constraint on the adjudicatory powers of non-Article III bankruptcy judges

    Corporate Panel—Chapter 11 Cramdown Interest Rates: Till, Momentive, and the Proper Valuation Method

    Get PDF
    The Corporate Panel debated the appropriate way to determine chapter 11 cramdown interest rates

    Variability of moisture sources in the Mediterranean region during the period 1980-2000

    Get PDF
    In this study, seasonal and interannual variability of the main atmospheric moisture sources over eight regions in the Mediterranean basin were investigated along a 21 year period. The Lagrangian dispersion model FLEXPART, developed by Stohl and James [2004, 2005], was applied to identify the contribution of humidity to the moisture budget of each region. This methodology is used to compute budgets of evaporation minus precipitation (E-P) by calculating changes in the specific humidity along backward trajectories, for the preceding 10 day periods. The results show clear seasonal differences in the moisture sources between wet and dry seasons. The Western Mediterranean Sea is the dominant moisture source for almost all the regions in the Mediterranean basin during the wet season, while the local net evaporation dominates during the dry season. The highest interannual variability is found in contributions to the Iberian Peninsula, Italy, and the Eastern Mediterranean. It is seen that the role of teleconnections is more limited than for the precipitation recorded in the region

    Oceanic and terrestrial sources of continental precipitation

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 50 (2012): RG4003, doi:10.1029/2012RG000389.The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El Niño–Southern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.Luis Gimeno would like to thank the Spanish Ministry of Science and FEDER for their partial funding of this research through the project MSM. A. Stohl was supported by the Norwegian Research Council within the framework of the WATER‐SIP project. The work of Ricardo Trigo was partially supported by the FCT (Portugal) through the ENAC project (PTDC/AAC-CLI/103567/2008).2013-05-0
    corecore