244 research outputs found

    OCD: The Effects of Doubt on Memory Confidence

    Get PDF
    Obsessive compulsive disorder (OCD) is an anxiety disorder that affects 1% of the United States population, and is categorized by both obsessive thoughts and compulsive behaviors. The most prevalent compulsive behavior is checking, which is an attempt to mitigate anxiety about a situation the person believes will be harmful if not addressed. Previous studies suggest a negative correlation between checking and metamemory (memory confidence, vividness and detail); however, there has been limited research on the effects of doubt, one of the main causes of checking behaviors, on metamemory. The current study used an online stove-checking task, first used by van den Hout and Kindt (2003), to investigate the influence of doubt on memory accuracy and metamemory in checking versus no checking groups as well as comparing people with high versus low levels of OCD symptomatology. Doubt was not shown to have any effect on metamemory, however, when comparing the low and high OCD groups, significant results were found for both accuracy and memory confidence. Checking had an effect on memory accuracy, but only for the high OCD symptomatology group. The high OCD group also had overall higher confidence levels. Some of these results contradict previous findings

    O transtorno de personalidade antissocial: uma análise dos métodos de punição

    Get PDF
    O Transtorno de Personalidade Antissocial, denominado de psicopatia, é uma condição humana relevante ao direito, uma vez que se associa regularmente com o crime. Para isso, o presente estudo abarca o entendimento sobre o que é o Transtorno, bem como os métodos punitivos que são utilizados para condenar esses indivíduos. Sendo assim, visa compreender os atuais problemas do sistema punitivo, da mesma forma que tenta apresentar um outro ponto de vista sobre os possíveis mecanismos de condenação, diagnóstico e tratamento

    A Role for FACT in RNA Polymerase II Promoter-Proximal Pausing

    Get PDF
    FACT (facilitates chromatin transcription) is an evolutionarily conserved histone chaperone that was initially identified as an activity capable of promoting RNA polymerase II (Pol II) transcription through nucleosomes in vitro. In this report, we describe a global analysis of FACT function in Pol II transcription in Drosophila. We present evidence that loss of FACT has a dramatic impact on Pol II elongation-coupled processes including histone H3 lysine 4 (H3K4) and H3K36 methylation, consistent with a role for FACT in coordinating histone modification and chromatin architecture during Pol II transcription. Importantly, we identify a role for FACT in the maintenance of promoter-proximal Pol II pausing, a key step in transcription activation in higher eukaryotes. These findings bring to light a broader role for FACT in the regulation of Pol II transcription

    Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes

    Get PDF
    FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5′-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remodeler RSC and FACT regulate its transcription through novel mechanisms, wherein the two gene-flanking nucleosomes containing H2A.Z, play different roles. Nhp6, which ensures transcription fidelity and helps load yFACT onto the gene flanking nucleosomes, has inhibitory role. RSC maintains a nucleosome abutting the gene terminator downstream, which results in reduced transcription rate in active state while H2A.Z probably helps RSC in keeping the gene nucleosome-free and serves as stress-sensor. All these factors maintain an epigenetic state which allows the gene to return quickly from repressed to active state and tones down the expression from the active SUP4 gene, required probably to maintain the balance in cellular tRNA pool

    Interplay of Dynamic Transcription and Chromatin Remodeling: Lessons from Yeast

    Get PDF
    Regulation of transcription involves dynamic rearrangements of chromatin structure. The budding yeast Saccharomyces cerevisiae has a variety of highly conserved factors necessary for these reconstructions. Chromatin remodelers, histone modifiers and histone chaperones directly associate to promoters and open reading frames of exposed genes and facilitate activation and repression of transcription. We compare two distinct patterns of induced transcription: Sustained transcribed genes switch to an activated state where they remain as long as the induction signal is present. In contrast, single pulsed transcribed genes show a quick and strong induction pulse resulting in high transcript levels followed by adaptation and repression to basal levels. We discuss intensively studied promoters and coding regions from both groups for their co-factor requirements during transcription. Interplay between chromatin restructuring factors and dynamic transcription is highly variable and locus dependent

    A method for genome-wide analysis of DNA helical tension by means of psoralen–DNA photobinding

    Get PDF
    The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA arrays. The entire procedure was robust. Comparison of PB obtained in vivo with that obtained in vitro with naked DNA revealed that numerous chromosomal regions had deviated PB values. Similar analyses in yeast topoisomerase mutants uncovered further PB alterations across specific chromosomal domains. These results suggest that distinct chromosome compartments might confine different levels of DNA helical tension in yeast. Genome-wide analysis of psoralen–DNA PB can be, therefore, a useful approach to uncover a trait of the chromosome architecture not amenable to other techniques

    Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering

    Get PDF
    Chromatin modifications, such as post-translational modification of histone proteins and incorporation of histone variants, play an important role in regulating gene expression. Joint analyses of multiple histone modification maps are starting to reveal combinatorial patterns of modifications that are associated with functional DNA elements, providing support to the ‘histone code’ hypothesis. However, due to the lack of analytical methods, only a small number of chromatin modification patterns have been discovered so far. Here, we introduce a scalable subspace clustering algorithm, coherent and shifted bicluster identification (CoSBI), to exhaustively identify the set of combinatorial modification patterns across a given epigenome. Performance comparisons demonstrate that CoSBI can generate biclusters with higher intra-cluster coherency and biological relevance. We apply our algorithm to a compendium of 39 genome-wide chromatin modification maps in human CD4+ T cells. We identify 843 combinatorial patterns that recur at >0.1% of the genome. A total of 19 chromatin modifications are observed in the combinatorial patterns, 10 of which occur in more than half of the patterns. We also identify combinatorial modification signatures for eight classes of functional DNA elements. Application of CoSBI to epigenome maps of different cells and developmental stages will aid in understanding how chromatin structure helps regulate gene expression

    Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant

    Get PDF
    Histone variants play important roles in the epigenetic regulation of genome function. The histone variant H2A.Z is evolutionarily conserved from yeast to vertebrates, and it has been reported to have multiple effects upon gene expression and insulation, and chromosome segregation. Recently two genes encoding H2A.Z were identified in the vertebrate genome. However, it is not yet clear whether the proteins transcribed from these genes are functionally distinct. To address this issue, we knocked out each gene individually in chicken DT40 cells. We found that two distinct proteins, H2A.Z-1 and H2A.Z-2, were produced from these genes, and that these proteins could be separated on a long SDS–PAGE gel. The two isoforms were deposited to a similar extent by the SRCAP chromatin-remodeling complex, suggesting redundancy to their function. However, cells lacking either one of the two isoforms exhibited distinct alterations in cell growth and gene expression, suggesting that the two isoforms have differential effects upon nucleosome stability and chromatin structure. These findings provide insight into the molecular basis of the multiple functions of the H2A.Z gene products

    Podbat: A Novel Genomic Tool Reveals Swr1-Independent H2A.Z Incorporation at Gene Coding Sequences through Epigenetic Meta-Analysis

    Get PDF
    Epigenetic regulation consists of a multitude of different modifications that determine active and inactive states of chromatin. Conditions such as cell differentiation or exposure to environmental stress require concerted changes in gene expression. To interpret epigenomics data, a spectrum of different interconnected datasets is needed, ranging from the genome sequence and positions of histones, together with their modifications and variants, to the transcriptional output of genomic regions. Here we present a tool, Podbat (Positioning database and analysis tool), that incorporates data from various sources and allows detailed dissection of the entire range of chromatin modifications simultaneously. Podbat can be used to analyze, visualize, store and share epigenomics data. Among other functions, Podbat allows data-driven determination of genome regions of differential protein occupancy or RNA expression using Hidden Markov Models. Comparisons between datasets are facilitated to enable the study of the comprehensive chromatin modification system simultaneously, irrespective of data-generating technique. Any organism with a sequenced genome can be accommodated. We exemplify the power of Podbat by reanalyzing all to-date published genome-wide data for the histone variant H2A.Z in fission yeast together with other histone marks and also phenotypic response data from several sources. This meta-analysis led to the unexpected finding of H2A.Z incorporation in the coding regions of genes encoding proteins involved in the regulation of meiosis and genotoxic stress responses. This incorporation was partly independent of the H2A.Z-incorporating remodeller Swr1. We verified an Swr1-independent role for H2A.Z following genotoxic stress in vivo. Podbat is open source software freely downloadable from www.podbat.org, distributed under the GNU LGPL license. User manuals, test data and instructions are available at the website, as well as a repository for third party–developed plug-in modules. Podbat requires Java version 1.6 or higher

    The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription

    Get PDF
    The activation-induced cytidine deaminase (AID) initiates somatic hypermutation, class-switch recombination, and gene conversion of immunoglobulin genes. In vitro, AID has been shown to target single-stranded DNA, relaxed double-stranded DNA, when transcribed, or supercoiled DNA. To simulate the in vivo situation more closely, we have introduced two copies of a nucleosome positioning sequence, MP2, into a supercoiled AID target plasmid to determine where around the positioned nucleosomes (in the vicinity of an ampicillin resistance gene) cytidine deaminations occur in the absence or presence of transcription. We found that without transcription nucleosomes prevented cytidine deamination by AID. However, with transcription AID readily accessed DNA in nucleosomes on both DNA strands. The experiments also showed that AID targeting any DNA molecule was the limiting step, and they support the conclusion that once targeted to DNA, AID acts processively in naked DNA and DNA organized within transcribed nucleosomes
    corecore