254 research outputs found

    Investigation of the Growth of Particles Produced in a Laval Nozzle

    Get PDF
    YesThis study focuses on numerical modeling of condensation of water vapor in a Laval nozzle, using the liquid drop nucleation theory. Influence of nozzle geometry, pressure, and temperature on the average drop size is reported. A computer program written in MATLAB was used used to calculate the nucleation and condensation of water vapor in the nozzle. The simulation results are validated with the available experimental data in the literature for steam condensation. The model reveals that the average drop size is reduced by increasing the divergent angle of the nozzle. The results also confirm that increasing the inlet pressure has a direct effect on the average drop size while temperature rise has an inverse effect on the drop size

    Does an interactive trust-enhanced electronic consent improve patient experiences when asked to share their health records for research? A randomized trial

    Get PDF
    Objective In the context of patient broad consent for future research uses of their identifiable health record data, we compare the effectiveness of interactive trust-enhanced e-consent, interactive-only e-consent, and standard e-consent (no interactivity, no trust enhancement). Materials and Methods A randomized trial was conducted involving adult participants making a scheduled primary care visit. Participants were randomized into 1 of the 3 e-consent conditions. Primary outcomes were patient-reported satisfaction with and subjective understanding of the e-consent. Secondary outcomes were objective knowledge, perceived voluntariness, trust in medical researchers, consent decision, and time spent using the application. Outcomes were assessed immediately after use of the e-consent and at 1-week follow-up. Results Across all conditions, participants (N = 734) reported moderate-to-high satisfaction with consent (mean 4.3 of 5) and subjective understanding (79.1 of 100). Over 94% agreed to share their health record data. No statistically significant differences in outcomes were observed between conditions. Irrespective of condition, black participants and those with lower education reported lower satisfaction, subjective understanding, knowledge, perceived voluntariness, and trust in medical researchers, as well as spent more time consenting. Conclusions A large majority of patients were willing to share their identifiable health records for research, and they reported positive consent experiences. However, incorporating optional additional information and messages designed to enhance trust in the research process did not improve consent experiences. To improve poorer consent experiences of racial and ethnic minority participants and those with lower education, other novel consent technologies and processes may be valuable

    Data Management Plans: the Importance of Data Management in the BIG‐MAP Project[]**

    Get PDF
    Open access to research data is increasingly important for accelerating research. Grant authorities therefore request detailed plans for how data is managed in the projects they finance. We have recently developed such a plan for the EU−H2020 BIG-MAP project—a cross-disciplinary project targeting disruptive battery-material discoveries. Essential for reaching the goal is extensive sharing of research data across scales, disciplines and stakeholders, not limited to BIG-MAP and the European BATTERY 2030+ initiative but within the entire battery community. The key challenges faced in developing the data management plan for such a large and complex project were to generate an overview of the enormous amount of data that will be produced, to build an understanding of the data flow within the project and to agree on a roadmap for making all data FAIR (findable, accessible, interoperable, reusable). This paper describes the process we followed and how we structured the plan

    A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?

    Get PDF
    Introduction The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. Objectives This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. Methods We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device’s performance was validated on 12 patients with breast cancer (BC) in different states. Results The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. Conclusion The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs

    Computational prediction of new magnetic materials

    Get PDF
    The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (|BH|MAX), anisotropy field (Ha), and magnetic hardness (κ) and a few half-metal phases in the Cr-O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique. © 2022 Author(s).Russian Science Foundation, RSF, (19-72-30043)The theoretical study of ferromagnets and DFT + DMFT calculations were supported by the Russian Science Foundation (Grant No. 19-72-30043). We thank Dr. V. A. Mukhanov for assistance in high-pressure experiments and I. V. Blinov, P. Y. Plechov, and A. N. Vasilyev for their help in the initial stages of this project

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    corecore