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Introduction: In this study, we evaluated the role of the Netrin-1 receptor UNC5b (Uncoordinated), a neuronal guidance 

molecule, during peripheral nerve regeneration using the mouse median nerve model. Materials and methods: Using 

Western blot analysis, we examined the expression changes of UNC5b after transection and microsurgical repair of the 

mouse median nerve distal to the transection site. We evaluated the histomorphometrical changes and functional recovery 

of the grasping force after median nerve transection and repair in wild-type (WT) mice and UNC5b
þ/2

 heterozygous mice. 

Results: In Western blot analysis, we could show a high increase of UNC5b in the nerve segment distal to the injury site at 

day 14. Histomorphometrical analysis did not show any significant differences between WT animals and heterozygous 

animals. Using the functional grasping test, we could demonstrate that peripheral nerve regeneration is signifi-cantly 

diminished in heterozygous UNC5b
þ/

 
2
 mice. Conclusion: By using the mouse median nerve model in transgenic animals, 

we dem-onstrate that the Netrin-1 receptor UNC5b plays an important role during peripheral nerve regeneration.  

Peripheral nerve injury is a common casualty. Although peripheral nerve fibers retain a considerable regeneration 

potential, recovery is usually rather poor, especially in case of large nerve defects. In these cases, nerve grafts and 

conduits are often used to bridge the defect.
1–3

 Recently, biological tubulization with muscle-vein-com-bined grafts 

have been showed to restore the continuity of the nerve with good clinical and functional outcomes.
4
 Before their use 

in patients, the muscle-vein grafts have been extensively studied in the rat median nerve model.
5,6

 To gain further 

insight in the biology of nerve injury and repair, we focused our work on the role of the neuronal guidance molecule 

UNC5b. 
The UNC5 (Uncoordinated) homolog family of Netrin receptors are single-pass transmembrane proteins. 

Four receptors have been found in mammals: UNC5a, b, c, and d.
7–11

 UNC5s are composed of two 

extracellular Ig domains and two extracellular thrombospondin domains.
12

 

The intracellular sequence contains a ZU5 domain, a death domain,
13

 and a DCC-binding domain.
14

 Neuronal 

growth cones are guided to their targets by attractive or repulsive guidance molecules. Netrins, semaphorins, 

eph-rins, and slits are part of these families. Classical Netrin receptors are DCC (Deleted in Colorectal Cancer) 

and the UNC5 family. Depending on the receptor, Netrin-1 functions as a chemotropic or repulsive factor that 

medi-ates axonal outgrowth. Neurons expressing the DCC receptor
15

 are attracted by Netrin-1, whereas the 

expres-sion of UNC5 converts attraction to repulsion.
14

 Loss of function of DCC results in misrouting of axons 

that are normally attracted by Netrin-1.
16

 Numerous studies sug-gest that long-range repulsion to Netrin-1 

requires a ligand-gated association between the cytoplasmatic domains of UNC5 and DCC, whereas UNC5 

without DCC is sufficient for short-range repulsion.
14,17,18

 

Less is known about the role of the UNC5b receptor in the peripheral nervous system (PNS). In this study, 

we analyze the expression patterns of UNC5b after peripheral nerve transection and further evaluate the 

functional role of UNC5b using the mouse median nerve model for the assessment of peripheral nerve 

regeneration.
19

 

 
 



MATERIALS AND METHODS 
 
Animals and Surgical Procedure 
 

All surgeries were performed using an anesthetic combination of fentanyl (0.05 mg/kg), midazolam (5 mg/ 

kg), and medetomidin (0.5 mg/kg). The national guide-lines for laboratory animal care and safety were 

followed. A total number of 72 mice were used in this study. 
To assess in vivo responses to peripheral nerve injury using Western blot analysis, 24 adult wild-type (WT) 

C57BL/6 mice weighing _30 g underwent transection of the left median nerve
19

 directly after the branching of a 

constant sensible nerve running exactly parallel to the pectoralis muscle border (Fig. 1). The nerve was subse-

quently repaired at 403 magnification using two epineu-ral stitches of 12–0 monofilament nylon. Similar to the 

procedure used for rats,
20

 in order to prevent interfer-ences with the grasping test device during testing due to 

the use of the contralateral forepaw, the contralateral median nerve was transected at the middle third of the 

brachium and its proximal stump was sutured in the pec-toralis major muscle to avoid spontaneous 

reinnervation. Six mice were killed after 0, 7, 14, and 21 days postle-sion for Western blot analysis. 
To assess the functional recovery after nerve transec-tion and quantitative morphology of nerve fiber 

regenera-tion, a total of 48 mice were used: 24 WT mice and 24 UNC5b
þ/2

 heterozygous mice (both on genetic 

back-ground C57BL/6). The mice were divided into four groups. Twelve WT animals and 12 UNC5b
þ/2

 

heterozy-gous animals underwent transection and repair of the median nerve as described above. Twelve WT 

animals and 12 UNC5b
þ/2

 heterozygous animals only underwent operative exposure of the median nerve 

without transec-tion. Starting from day 5 postoperation, the grasping test was carried out every 5 days until day 

50 when animals were euthanized for harvest of nerve samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Intraoperative view of the murine axilla with the three main upper extremity nerves and the pectoralis muscle before transection 

of the median nerve. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.] 
 
Western Blot Analysis 
 
The explanted median nerves distal to the transection site (n 5 6) were lysed and homogenized. The lysed 

nerves were pooled and eluted in radio immunoprecipita-tion assay (RIPA) buffer [50 mM Tris-HCl (pH 7.4), 

150 mM NaCl, 0.5% deoxycholic acid, 0.5% Triton X-100, 1 mM phenylmethane sulfonyl fluoride (PMSF), 1 

mM so-dium orthovanadate, and 13 protease inhibitor mixture; Roche Molecular Biochemicals]. An equal 

volume of pro-teins was loaded on 10% sodium dodecyl sulfate (SDS) containing polyacrylamide gels for 

electrophoresis and transferred to a polyvinylidene fluoride (PVDF) mem-brane (Bio-Rad, Hercules, CA). The 

membrane was blocked with 5% nonfat milk and Tris-buffered saline containing 0.05% Tween 20 for 1 hour, 

and then the membrane was immunoprobed with anti-UNC5b antibody (Santa Cruz Biotechnology, Santa Cruz, 

CA) overnight at 48C. After three washes, the membrane was incubated with horseradish peroxidase (HRP)-

conjugated secondary antibody for 1 hour at room temperature. After three more washes, the reaction was 



visualized with the enhanced chemiluminescence reaction (ECL Detection system, Fluka-Luminol 09253, p-

Coumaric acid; Sigma-Aldrich, Munich, Germany). Normalized relative intensity was determined using ImageJ 

V 1.43 Software. 

 
Functional Grasping Test 

 
The grasping test was performed using a precision balance connected to a rod. The test was performed as 

described by Tos et al.19 Each mouse was tested three times, and then the average value was recorded. 

Operated WT mice (n 5 12) were compared with operated UNC5bþ/2 mice (genetic background C57BL/6; n 5 

12). Nonoperated WT mice (sham; n 5 12) and nonoperated UNC5bþ/2 mice (sham; n 5 12) served as 

controls. 

 
Resin Embedding for Quantitative Morphology of Nerve Fiber Regeneration 

 
For quantitative morphology of nerve fiber regenera-tion, an 8-mm-long segment of the median nerve distal 

to the site of lesion was removed. A 4/0 stitch was used to mark the proximal stump of the nerve segment. An 

8-mm-long segment of uninjured median nerve, taken from a corresponding level, was withdrawn from the non-

operated control animals and used as control. The nerve samples were fixed and prepared for design-based 

quanti-tative morphology of myelinated nerve fibers. Specimens were fixed by immediate immersion in a 

fixation solution, containing 2.5% purified glutaraldehyde and 0.5% saccha-rose in 0.1M Sorensen phosphate 

buffer for 3–4 hours. They were then washed in a solution containing 1.5% saccharose in 0.1M Sorensen 

phosphate buffer, postfixed in 1% osmium tetroxide, dehydrated, and embedded in Glauerts’ embedding 

mixture of resins consisting equal parts of Araldite M and the Araldite Ha¨rter, HY 964 (Merck, Darmstatd, 

Germany), to which was added 1–2% of the accelerator 964, DY 064 (Merck), and 0.5% of the plasticizer 

dibutyl phthalate. A series of 2-lm-thick semi-thin transverse sections were cut starting from the distal stump of 

the median nerve segment, using an Ultracut UCT ultramicrotome (Leica Microsystems, Wetzlar, Germany). 

They were stained by toluidine blue for high-resolution light microscopy examination, and design-based 

quantitative morphology for each nerve specimen 
 
was carried out according to the stereological method described by Geuna et al.

21–24 

 

 

 

 

 

 

 

 

 

Figure 2. Western blot: High UNC5b protein expression at day 14 distal to the transection site. [Color figure can be viewed in the online 
issue, which is available at wileyonlinelibrary.com.] 
 
Statistical Analysis 
 

All data are presented as mean 6 SD. Statistical anal-ysis was performed using one-way analysis of 

variance test for histomorphometrical data. The different time-point assessments of the grasping test were 

compared by using analysis of covariance. A probability value of less than 5% was considered to be statistically 

significant. 

 
RESULTS 
 
UNC5b Protein Expression Using Western Blot 

 
Analysis 

We examined the protein expression changes of UNC5b after median nerve injury to further elicit the role of 



UNC5b. In Western blot analysis, we could show a highly specific increase of UNC5b in the nerve segment 

distal to the injury site in WT animals at day 14 after pe-ripheral nerve transection and repair (P > 0.001). 

Before and after day 14, UNC5b was expressed at lower levels (Fig. 2). The normalized relative intensity of 

protein expression is presented in Figure 3. 

 
Functional Grasping Test 
Using the grasping test, we could show that peripheral nerve regeneration was significantly diminished in 

hetero-zygous UNC5b
þ/2

 mice. Although there was no difference in grip strength in both control groups (sham 

WT and sham UNC5b
þ/2

 mice), we could demonstrate a tremen-dous drop in total grip strength in operated 

UNC5b
þ/2

 animals when compared with operated WT animals (P < 0.001). On one hand, the grip strength of 

heterozygous mice only reached 60% of the strength of WT animals 50 days following nerve division and 

repair. Furthermore, they never got back their preoperative original strength. On the other hand, the functional 

recovery of operated UNC5b
þ/2

 mice moved on by far more slowly when compared with WT animals (P < 

0.001; Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Normalized relative intensity of protein expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Functional grasping test: Grip strength of heterozygous mice only reaches 60% of the strength of WT animals (P < 0.001). 

Functional recovery of operated UNC5b
þ/2

 mice moves on by far more slowly when compared with WT animals, never reaching back the 

original force. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.] 
 
 
Histomorphology of Nerve Fiber Regeneration 
 

Various morphological predictors of nerve regenera-tion were assessed by stereology at day 50 after nerve 

transection. Regarding total number of myelinated fibers after nerve transection and repair, we could show an 



increased number of fibers in heterozygous animals when compared with WT animals; however, the difference 

was not significant (P > 0.05). Furthermore, the cross-sectional areas of transected and repaired nerves were 

larger in transgenic animals when compared with WT animals, without any significant difference (P > 0.05). 
Axon diameter, fiber diameter, and myelin thickness were significantly diminished in WT animals and 

transgenic animals after transection and repair when compared with animals without nerve division (P < 0.001; 

P < 0.001; P < 0.01). Regarding the last three parameters, there was no significant difference between 

transected and repaired nerves of WT animals when compared with transected and repaired nerves of 

heterozygous animals (P > 0.05; Figs. 5 and 6). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Histological cuts (toluidine blue): no significant differences in total number of fibers, cross-sectional area, and fiber density. Axon 
diameter, fiber diameter, and myelin thickness were significantly diminished in WT animals and transgenic animals after transection and 
repair when compared with animals without nerve division (P < 0.001; P < 0.001; P < 0.01). When comparing operated WT mice and 
operated UNC5bþ/2 mice, these parameters were without significant difference (*P < 0.05; **P < 0.01; ***P < 0.001). [Color figure can be 
viewed in the online issue, which is available at wileyonlinelibrary.com.] 
 

DISCUSSION 

 

In this article, we showed that UNC5b plays an important role during peripheral nerve regeneration. An 

important ligand of the UNC5b receptor is Netrin-1, which is known to direct cell and axonal migration during 

development. Another receptor of Netrin-1 is DCC. DCC mediates  chemoattraction,  whereas  UNC5b  

mediates repulsion of outgrowing axons.11 

The findings of our study identify UNC5b as an important  factor  for  axonal  regeneration  after  peripheral 

nerve injury. We clearly demonstrated a peak of UNC5b protein expression in Western blot analysis in the 

nerve segment distal to the injury site at day 14. After this time point, UNC5b protein expression drops down to 

the level of the uninjured nerve. 

Using the grasping test,19  we showed that UNC5bþ/2 mice recover their grasping force more slowly than 

WT mice and never get back their initial preoperative force. 

This is the first study to use the mouse median nerve model to evaluate peripheral nerve regeneration in 

transgenic animals. The histomorphometric results of regenerated nerve fibers did not reveal any differences 



between WT and heterozygous animals. Recently, Muratori et al.25 showed that the regenerated nerve fibers 

did not return to the pretrauma size.  

During development of the mammalian spinal cord, DCC expression is downregulated, whereas UNC5 

homolog expression increases, indicating that UNC5 repellent signaling is the dominant response to Netrin-1 in 

the adult spinal cord.
11,26

 After spinal cord injury, the expression of DCC and UNC5 proteins is reduced and 

corre-lates with poor axonal regeneration in these lesions.
27,28

 

 

According to these results, we demonstrated poor func-tional recovery in UNC5b
þ/2

 mice after peripheral nerve 

transection when compared with WT animals. 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Histomorphometrical analysis: no significant differences in total number of fibers, cross-sectional area, and fiber density. Axon di-

ameter, fiber diameter, and myelin thickness were significantly diminished in WT animals and transgenic animals after transection and 

repair when compared with animals without nerve division (P < 0.001; P < 0.001; P < 0.01). When comparing operated WT mice and 

operated UNC5b
þ/2

 mice, these parameters were without significant difference (*P < 0.05; **P < 0.01; ***P < 0.001). 
  

Furthermore, the UNC5b receptor and its ligand Netrin-1 are expressed in the adult vertebrate nervous 

system by oligodendrocytes in the central nervous sys-tem
29,30

 and by Schwann cells in the PNS.
31

 Webber et 

al.
30

 demonstrated that Schwann cells direct peripheral nerve regeneration through DCC and UNC5b 

receptors. Lee et al.
32

 showed that Netrin-1 induces proliferation of Schwann cells through the UNC5b 

receptor. Interestingly, UNC5b is specifically expressed during neoangiogenesis, 
´ 33 34 

as demonstrated by Larrivee et al.  and Lu et al.  

Hong et al.
4
 demonstrated that during axonal naviga-tion, growth cones change their responsiveness to 

guid-ance cues as they progress through a ligand-gated associ-ation between cytoplasmatic domains of UNC5 

and DCC family receptors. Once a growth cone has reached a par-ticular intermediate target, it must change its 

priority to move on to the next target. 

We interpret our findings of high UNC5b protein expression at day 14 and massive drop of protein expres-

sion after day 14 as follows: around this time point, the regenerating axonal growth cone passes through the 

ana-lyzed nerve segment distal to the lesion site (Fig. 7). It is ‘‘surrounded’’ by UNC5b expressed by Schwann 

cells in the immediate vicinity. A subtle balance between its ligand Netrin-1 and coreceptor DCC directs the 



growth cone distally to its target organ. The finding that functional nerve recovery in UNC5b
þ/2

 mice is slower 

than that in WT animals is consistent with this model and partly explains why these animals never reach their 

initial grasping force. 
Further studies are required to clarify the exact mech-anism of action of UNC5b during peripheral nerve 

regen-eration. It is slightly unclear why functional tests show large differences between the two groups but 

histomor-phometric data do not. At day 14, when the growth cone passes our analyzed nerve segment, UNC5b 

is highly expressed, showing the action of UNC5b at the tip of the growth cone. Electromicroscopical findings 

could be of special interest; however, these aspects were not addressed in this work. Future research has also 

to be focused on the distal neuromuscular junction site not analyzed in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Interpretation of the results: Around day 14, axonal growth cone passes through the analyzed nerve segment distal to the lesion 
site. It is ‘‘surrounded’’ by UNC5b expressed by Schwann cells in the immediate vicinity. [Color figure can be viewed in the online issue, 
which is available at wileyonlinelibrary.com.] 



 
CONCLUSION 
 

In this work, we clearly demonstrated that the median nerve mouse model is a valuable tool to evaluate 

peripheral nerve regeneration in transgenic animals. We could show poor functional recovery in transgenic 

UNC5b
þ/2

 mice when compared with WT mice after median nerve transection and repair. Furthermore, we 

demonstrated high expression of UNC5b at day 14 after nerve division and repair. The main limitation is the 

very small nerve size requiring advanced microsurgical skills for performing epineural suturing. The long-term 

objec tive of these findings should be the local enhancement or addition of proteins supporting peripheral nerve 

regenera-tion or the specific block of molecules inhibiting nerve recovery. 
 
REFERENCES 
 
1. Colen KL, Choi M, Chiu DT. Nerve grafts and conduits. Plast Reconstr Surg 2009;124 (Suppl):e386–e394.   
2. Fox IK, Brenner MJ, Johnson PJ, Hunter DA, Mackinnon SE. Axo-nal regeneration and motor neuron 

survival after microsurgical nerve reconstruction. Microsurgery 2012. [Epub ahead of print]  
3. Penna V, Wewetzer K, Munder B, Stark GB, Lang EM. The long-term functional recovery of repair of sciatic 

nerve transection with biogenic conduits. Microsurgery 2012;32:377–382.   
4. Tos P, Battiston B, Ciclamini D, Geuna S, Artiaco S. Primary repair of crush nerve injuries by means of 

biological tubulization with muscle-vein-combined grafts. Microsurgery 2012;32:358–363.   
5. Battiston B, Tos P, Geuna S, Giacobini-Robecchi MG, Guglielmone   
R. Nerve repair by means of vein filled with muscle grafts. II. Mor-phological analysis of regeneration. 

Microsurgery 2000;20:37–41.   
6. Tos P, Battiston B, Nicolino S, Raimondo S, Fornaro M, Lee JM, Chirila L, Geuna S, Perroteau I. 

Comparison of fresh and predegen-erated muscle-vein-combined guides for the repair of rat median nerve. 
Microsurgery 2007;27:48–55.   

7. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB. The mouse rostral cerebellar 
malformation gene enco-des an UNC-5-like protein. Nature 1997;386:838–842.   

8. Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M. Vertebrate homologues 
of C. elegans UNC-5 are candidate netrin receptors. Nature 1997;386:833–838.   

9. Przyborski SA, Knowles BB, Ackerman SL. Embryonic phenotype of Unc5h3 mutant mice suggests 
chemorepulsion during the forma-tion of the rostral cerebellar boundary. Development 1998;125:41– 50.  

 
10. Engelkamp D. Cloning of three mouse Unc5 genes and their expres-sion patterns at mid-gestation. Mech 

Dev 2002;118:191–197.   
11. Moore SW, Tessier-Lavigne M, Kennedy TE. Netrins and their receptors. Adv Exp Med Biol 2007;621:17–

31.   
12. Geisbrecht BV, Dowd KA, Barfield RW, Longo PA, Leahy DJ. Netrin binds discrete subdomains of DCC and 

UNC5 and mediates interactions between DCC and heparin. J Biol Chem 2003;278: 32561–32568.   
13. Manitt C, Kennedy TE. Where the rubber meets the road: Netrin expression and function in developing and 

adult nervous systems. Prog Brain Res 2002;137:425–442.   
14. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein   
E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts 

netrin-induced growth cone attraction to repulsion. Cell 1999;97:927–941.   
15. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M. Deleted in 

Colorectal Cancer (DCC) encodes a netrin receptor. Cell 1996;87:175–185.   
16. Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, Culotti JG. UNC-40, a C. elegans homolog 

of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 
1996;87:187–195.   

17. Keleman K, Dickson BJ. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 
2001;32:605–617.   

18. Merz DC, Zheng H, Killeen MT, Krizus A, Culotti JG. Multiple sig-naling mechanisms of the UNC-6/netrin 
receptors UNC-5 and UNC-40/DCC in vivo. Genetics 2001;158:1071–1080.   

19. Tos P, Ronchi G, Nicolino S, Audisio C, Raimondo S, Fornaro M, Battiston B, Graziani A, Perroteau I, 
Geuna S. Employment of the mouse median nerve model for the experimental assessment of pe-ripheral 
nerve regeneration. J Neurosci Methods 2008;169:119–127.  

20. Papalia I, Tos P, Stagno d’Alcontres F, Battiston B, Geuna S. On the use of the grasping test in the rat 
median nerve model: A re-appraisal of its efficacy for quantitative assessment of motor function recovery. J 
Neurosci Methods 2003;127:43–47.   

21. Geuna S. The revolution of counting ‘‘tops’’: Two decades of the dissector principle in morphological 
research. Microsc Res Tech 2005;66:270–274.   



22. Geuna S, Tos P, Battiston B, Guglielmone R. Verification of the two-dimensional disector, a method for the 
unbiased estimation of density and number of myelinated nerve fibers in peripheral nerves. Ann Anat 
2000;182:23–34.   

23. Geuna S, Tos P, Guglielmone R, Battiston B, Giacobini-Robecchi MG. Methodological issues in size 
estimation of myelinated nerve fibers in peripheral nerves. Anat Embryol (Berl) 2001;204:1–10.   

24. Geuna S, Gigo-Benato D, Rodrigues Ade C. On sampling and sam-pling errors in histomorphometry of 
peripheral nerve fibers. Micro-surgery 2004;24:72–76.   

25. Muratori L, Ronchi G, Raimondo S, Giacobini-Robecchi MG, For-naro M, Geuna S. Can regenerated nerve 
fibers return to normal size? A long-term post-traumatic study of the rat median nerve crush injury model. 
Microsurgery 2012;32:383–387.   

26. Manitt C, Thompson KM, Kennedy TE. Developmental shift in expression of netrin receptors in the rat spinal 
cord: Predominance of UNC-5 homologues in adulthood. J Neurosci Res 2004;77:690–700.   

27. Manitt C, Wang D, Kennedy TE, Howland DR. Positioned to inhibit:   
Netrin-1 and netrin receptor expression after spinal cord injury. J Neurosci Res 2006;84:1808–1820.  
28. Shifman MI, Selzer ME. Expression of the netrin receptor UNC-5 in lamprey brain: Modulation by spinal cord 

transection. Neurorehabil Neural Repair 2000;14:49–58.   
29. Manitt C, Colicos MA, Thompson KM, Rousselle E, Peterson AC, Kennedy TE. Widespread expression of 

netrin-1 by neurons and oli-godendrocytes in the adult mammalian spinal cord. J Neurosci 2001;21:3911–
3922.   

30. Webber CA, Christie KJ, Cheng C, Martinez JA, Singh B, Singh V, Thomas D, Zochodne DW. Schwann 
cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 
2011;59:1503–1517.   

31. Madison RD, Zomorodi A, Robinson GA. Netrin-1 and peripheral nerve regeneration in the adult rat. Exp 
Neurol 2000;161:563–570.   

32. Lee HK, Seo IA, Seo E, Seo SY, Lee HJ, Park HT. Netrin-1 induces proliferation of Schwann cells through 
Unc5b receptor. Biochem Biophys Res Commun 2007;362:1057–1062.   

33. Larrive´e B, Freitas C, Trombe M, Lv X, Delafarge B, Yuan L, Bouvre´e K, Bre´ant C, Del Toro R, Bre´chot 
N, Germain S, Bono F, Dol F, Claes F, Fischer C, Autiero M, Thomas JL, Carmeliet P, Tessier-Lavigne M, 
Eichmann A. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 
2007;21: 2433–2447.  

34. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Bre´ant C, Claes F, De Smet F, Thomas JL, 
Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A. The netrin receptor UNC5B medi-ates guidance 
events controlling morphogenesis of the vascular sys-tem. Nature 2004;432:179–186. 


