17 research outputs found

    Microseismicity and seismotectonics of the South Caspian Lowlands, NE Iran

    Get PDF
    This paper is concerned with the microseismicity and seismotectonics of the eastern South Caspian Sea region, where the East Alborz mountains descend to meet the South Caspian Lowlands of NE Iran. To better understand the present-day tectonics and seismicity of this region, which includes the cities of Gorgan and Gonbad-e-Qabus (combined population 500 000), we installed a temporary local seismic network across the area for 6 months between 2009 and 2010. We analysed the seismicity and focal mechanisms together with data from the permanent networks of the Institute of Geophysics, University of Tehran (IGUT) and the International Institute of Earthquake Engineering and Seismology (IIEES), based in Tehran. Microseismicity is focused primarily on the Shahrud fault system, which bounds the east Alborz range to the south. Relatively few earthquakes are associated with the Khazar thrust fault, which bounds the north side of the range. A cluster of shallow microseismicity (<15 km depth) occurs 40 km north of the Khazar fault (within the South Caspian Lowlands; SCL), an area typically thought to be non-deforming. This area coincides with the location of three relatively deep thrust earthquakes (M_w 5.3–5.5) which occurred in 1999, 2004 and 2005. Inversion of teleseismic body waveforms allows us to constrain the depth of these earthquakes at 26–29 km. Although significant sedimentation throughout the SCL obscures any expression of recent fault activity at the surface, focal mechanisms of well-located events from the shallow cluster of micro-seismicity show a significant component of left-lateral strike-slip motion (assuming slip occurs on NE–SW fault planes, typical of active faults in the region), as well as a small normal component. Inversion of traveltimes for well-located events in our network yields a velocity structure for the region, and a Moho depth of 41 km. The pattern of deep thrust and shallow normal seismicity could be explained by bending of the rigid South Caspian crust as it underthrusts the East Alborz mountains and Central Iran. Late Quaternary reorganization of drainage systems in the SCL may be the result of shallow normal fault activity within the SCL

    Variation of Moho depth in the central part of the Alborz Mountains, northern Iran

    No full text
    International audienceThe Alborz Mountains of northern Iran form a belt of active crustal deformation along the southern side of the Caspian Sea within the broad Arabian-Eurasia continental collision zone. Although the range has an average elevation of about 3000 m with the volcanic peak Damavand reaching an elevations of 5671 m, early gravity studies found that the crust beneath the range is no thicker than that beneath the surrounding region suggesting the range is not supported by a crustal root. We determine a model for the crust of the central Alborz Mountains using teleseismic receiver functions from data recorded on a network of broad-band seismographs temporarily deployed across the central part of the range. The receiver functions from these recordings have been inverted simultaneously with fundamental-mode Rayleigh wave group velocity measurements in the 10-100 s period range. Our analysis shows a thickening of the crust from ~48 km beneath the northern part of the Central Iranian Plateau to 55-58 km below the central part of the Alborz Mountains, then a thinning of the crust to ~46 km north of the Alborz Mountains beneath the coastal region of the South Caspian Sea. Our seismological results show that the central Alborz Mountains have a moderate crustal root but of insufficient thickness to compensate the elevation of the range. The analysis of free-air gravity shows that the elevation of the Alborz Mountains is largely supported by the elastic strength of the Iranian Plate, the South Caspian Plate, or both

    Assessing tectonic and climatic causal mechanisms in foreland-basin stratal architecture: Insights from the Alborz Mountains, northern Iran

    No full text
    The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wde coarsening-upward units spanning a period of 106years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S>1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S<1 (13.8 and 13.8-11Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S<1, at 11-10.3Ma and 9-6-7.6Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply. © 2013 John Wiley & Sons, Ltd
    corecore