70 research outputs found

    Hypoxia causes transgenerational impairments in reproduction of fish

    Get PDF
    published_or_final_versio

    How Does Socioeconomic Development Affect COPD Mortality? An Age-Period-Cohort Analysis from a Recently Transitioned Population in China

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of death, particularly in developing countries. Little is known about the effects of economic development on COPD mortality, although economic development may potentially have positive and negative influences over the life course on COPD. We took advantage of a unique population whose rapid and recent economic development is marked by changes at clearly delineated and identifiable time points, and where few women smoke, to examine the effect of macro-level events on COPD mortality. Methods: We used Poisson regression to decompose sex-specific COPD mortality rates in Hong Kong from 1981 to 2005 into the effects of age, period and cohort. Results: COPD mortality declined strongly over generations for people born from the early to mid 20th century, which was particularly evident for the first generation to grow up in a more economically developed environment for both sexes. Population wide COPD mortality decreased when air quality improved and increased with increasing air pollution. COPD mortality increased with age, particularly after menopause among women. Conclusions: Economic development may reduce vulnerability to COPD by reducing long-lasting insults to the respiratory system, such as infections, poor nutrition and indoor air pollution. However, some of these gains may be offset if economic development results in increasing air pollution or increasing smoking. © 2011 Chen et al.published_or_final_versio

    A framework to move forward on the path to eco-innovation in the construction industry: implications to improve firms´ sustainable orientation

    Full text link
    This paper examines key aspects in the innovative behavior of the construction firms that determine their environmental orientation while innovating. Structural equation modeling was used and data of 222 firms retrieved from the Spanish Technological Innovation Panel (PITEC) for 2010 to analyse the drivers of environmental orientation of the construction firms during the innovation process. The results show that the environmental orientation is positively affected by the product and process orientation of construction firms during the innovation process. Furthermore, the positive relation between the importance of market information sources and environmental orientation, mediated by process and product orientation, is discussed. Finally, a model that explains these relations is proposed and validated. Results have important managerial implications for those companies worried about their eco-innovative focus as the types of actions and relations within firms most suitable for improving their eco-innovative orientation are highlighted.The authors would like to thank the Spanish Economy and Competitiveness Ministry for its support through the research project (EC02011-27369) and also the Universitat Politecnica de Valencia (SP20140647).Segarra Oña, MDV.; Peiró Signes, A.; Cervelló Royo, RE. (2015). A framework to move forward on the path to eco-innovation in the construction industry: implications to improve firms´ sustainable orientation. Science and Engineering Ethics. 21(6):1469-1484. https://doi.org/10.1007/s11948-014-9620-2S14691484216Amara, N., & Landry, R. (2005). Sources of information as determinants of novelty of innovation in manufacturing firms: evidence from the 1999 statistics Canada innovation survey. Technovation, 25(3), 245–259.Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two- step approach. Psychological Bulletin, 103(3), 411–423.Ang, G. K. I. (2004). Competing revaluing construction paradigms in practice. Rotterdam: CIB.Audet, R., & Guyonnaud, M. F. (2013). Transition in practice and action in research. A French case study in piloting eco-innovations. Innovation: The European Journal of Social Science Research, 26(4), 398–415.Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 18(1), 74–94.Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least square (PLS) approach to causal modelling: Personal computer adoption and use as an illustration. Technology Studies, Special Issue on Research Methodology, 2(2), 285–309.Barrett, P. (2007). Revaluing construction: A holistic model. Building Research and Information, 35(3), 268–286.Barrett, P., & Lee, A. (2005). Revaluing construction: A CIB priority theme, Salford Centre for Research and Innovation. Salford/CIB: University of Salford, Rotterdam.Beamon, B. M. (2005). Environmental and sustainability ethics in supply chain management. Science and Engineering Ethics, 11(2), 221–234.Burciu, A., Bostan, I., Condrea, P., & Grosu, V. (2010). Financing the environmental policies in the communitarian space. Environmental Engineering and Management Journal, 9(9), 1179–1185.Carrascosa-López, C., Peiró-Signes, Á., & Segura-García-del-Río, B. (2012). Does it pay to be greener than legislation? An empirical study of spanish tile industry. Journal of Sustainable Development, 5(5), 17–26.Carter, T., & Fowler, L. (2008). Establishing green roof infrastructure through environmental policy instruments. Environmental Management, 42(1), 151–164.Cervelló-Royo, R., Garrido-Yserte, R., & Segura-García del Río, B. (2012). An urban regeneration model in heritage areas in search of sustainable urban development and internal cohesion. Journal of Cultural Heritage Management and Sustainable Development, 2(1), 44–61.Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). New Jersey: Lawrence Erlbaum Associates.Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modelling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic mail emotion/adoption study. Information Systems Research, 14(2), 189–217.Commission, European. (2004). Facing the challenge: The Lisbon strategy for growth and employment Brussels. Brussels: European Comission.Commission of the European Communities (2006). Action Plan for Energy Efficiency: Realising the Potential, Brussels. http://ec.europa.eu/energy/action_plan_energy_efficiency/doc/com_2006_0545_en.pdf . (Accessed 31/01/2014).Courtney, R., & Winch, G. (2002). CIB strategy for re-engineering construction. Rotterdam: CIB.Courtney, R., & Winch, G. M. (2003). Re-engineering construction: The role of research and implementation. Building Research and Information, 31(2), 172–178.Davis, M. (2001). The professional approach to engineering ethics: Five research questions. Science and Engineering Ethics, 7, 379–390.Ding, G. K. C. (2008). Sustainable construction. The role of environmental assessment tools. Journal of Environmental Management, 86(3), 451–464.Du Plessis, C., & Cole, R. J. (2011). Motivating change: Shifting the paradigm. Building Research and Information, 39(5), 436–449.Esty, D. C., & Winston, A. S. (2006). Green to gold, how smart companies use environmental strategy to innovate, create value, and build competitive advantage. Hoboken: Wiley.European Commission (2010) Europe 2020: A strategy for smart, sustainable and inclusive growth, Brussels.Falk, R., & Miller, N. (1992). A primer on soft modelling. Akron: The University of Akron Press.Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 328–388.Freeman, R. E. (1994). The politics of stakeholder theory: Some future directions. Business Ethics Quarterly, 4(4), 409–422.Gázquez-Abad, J. C., Huertas-García, R., Vázquez-Gómez, M. D., & Romeo, A. C. (2014). Drivers of sustainability strategies in Spain’s wine tourism industry. Cornell Hospitality Quarterly, 1938965514549657.Gebauer, H., Gustafsson, A., & Witell, L. (2011). Competitive advantage through service differentiation by manufacturing companies. Journal of Business Research, 64(12), 1270–1280.Geisser, S. (1975). A predictive approach to the random effect model. Biometrika, 61(1), 101–107.González-Benito, O., & González-Benito, J. (2008). Implications of market orientation on the environmental transformation of industrial firms. Ecological Economics, 64(4), 752–762.Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least square path modelling in international marketing. In I. Rudolf, R. Sinkovics & N. Pervez (Eds.), Advance in international marketing (Vol. 20, pp. 277–319).Hill, S., & Lorenz, D. (2011). Rethinking professionalism: Guardianship of land and resources. Building Research and Information, 39(3), 314–319.Huedo, P., & Lopez-Mesa, B. (2013). Review of tools to assist in the selection of sustainable building assemblies. Informes de la Construcción, 65(529), 77–88.IPCC. (2007a). Climate change 2007: The physical science basis. summary for policymakers: Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.IPCC. (2007b). Mitigation. contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.Jensen, J. S., Gottlieb, S. C., & Thuese, C. L. (2011). Construction sector development: Frames and governance responses. Building Research and Information, 39(6), 665–667.Kibert, Ch J. (2007). The next generation of sustainable construction. Building Research & Information, 35(6), 595–601.Kim, Y., Brodhag, C., & Mebratu, D. (2014). Corporate social responsibility driven innovation. Innovation: The European Journal of Social Science Research, 27(2), 175–196.Kuhn, S. (2001). Commentary on: The greening of engineers: A cross-cultural experience. Science and Engineering Ethics, 7(1), 123–124.Lam, P. T., Chan, E. H., Chau, C. K., Poon, C. S., & Chun, K. P. (2011). Environmental management system vs green specifications: How do they complement each other in the construction industry? Journal of Environmental Management, 92(3), 788–795.Leimeister, S., Leimeister, J. M., & Knebel, U. (2009). A cross-national comparison of perceived strategic importance of RFID for CIOs in Germany and Italy. International Journal of Information Management, 29(1), 37–47.Leman, A., & Bordass, B. (2007). Are users more tolerant of green buildings? Building Research and Information, 35(6), 662–673.Liefferink, D., & Andersen, M. S. (1998). Strategies of the green member states in EU environmental policy-making. Journal of European Public Policy, 5(2), 254–270.Losada, B. (2013). Smart cities through the smart grid: The sustainable smart city and its energy dependence. DYNA, 88(2), 154–155.Luetzkendorf, T. (2010). Sustainable properties-dream or trend? Informes de la Construcción, 61(517), 5–15.Lützkendorf, T., & Lorenz, D. (2007). Integrating sustainability into property risk assessments for market transformation. Building Research and Information, 35(6), 644–671.Matthyssensa, P., & Vandenbempt, K. (2008). Moving from basic offerings to value-added solutions: Strategies, barriers and alignment. Industrial Marketing Management, 37(3), 316–328.McKeiver, C., & Gadenne, D. (2005). Environmental management systems in small and medium business. Small Business Journal, 23(5), 513–537.Nunnally, J. C., & Bernstein, I. H. (1995). Teoría psicométrica. México: McGraw-Hill.Parsa, H. G., Segarra-Oña, M., Jang, S. S., Chen, R., & Singh, A. J. (2014). Special issue on sustainable and eco-innovative practices in hospitality and tourism. Cornell Hospitality Quarterly, 55(1), 5–5.Pearce, D. (2006). Is the construction sector sustainable? Building Research and Information, 34(3), 201–207.Peiró-Signes, A., Miret-Pastor, L. L., Segarra-Oña, M. V., & De Miguel Molina, B. (2013). Analysing the determinants of better performance through eco management tools at the food industry: An empirical study. In P. Golinska (Ed.), Eco Production and logistics (pp. 73–90). Heidelberg: Springer.Peiró-Signes, A., Verma, R., Mondéjar-Jiménez, J., & Vargas-Vargas, M. (2014). The impact of environmental certification on hotel guest ratings. Cornell Hospitality Quarterly, 55(1), 40–51.Petruzzelli, A. M., Dangelico, R. M., Rotolo, D., & Albino, V. (2011). Organizational factors and technological features in the development of green innovations: Evidence from patent analysis. Innovation: Management, Policy and Practice, 13(3), 291–310.Porter, M. E., & Kramer, M. R. (2006). Strategy and society: The link between competitive advantage and corporate social responsibility. Harvard Business Review, 84(12), 78–92.Porter, M. E., & Van der Linde, C. (1995). Toward a new conception of the environment competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118.Rennings, K. (2002). Redefining innovation—Eco-innovation research and the contribution from ecological economics. Ecological Economics, 32(2), 319–332.Rennings, K., Ziegler, A., Ankele, K., & Hoffman, E. (2006). The influence of different characteristics of the eu environmental management and auditing scheme on technical environmental innovations and economic performance. Ecological Economics, 57(1), 45–59.Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 M3. http:// www.smartpls.de .Sánchez-Ollero, J. L., García-Pozo, A., & Marchante-Mera, A. (2013). How does respect for the environment affect final prices in the hospitality sector? A hedonic pricing approach. Cornell Hospitality Quarterly, 55, 31–39.Schmidt, V. A., & Radaelli, C. M. (2004). Policy change and discourse in Europe: Conceptual and methodological issues. West European Politics, 27(2), 183–210.Segarra-Oña, M.D.V., M.Peiró-Signes, Á., Verma, R., & Miret-Pastor, L. (2012). Does environmental certification help the economic performance of hotels? Evidence from the spanish hotel industry. Cornell Hospitality Quarterly, 1938965512446417.Segarra-Oña, M. V., Peiró-Signes, A., Albors-Garrigós, J., & Miret-Pastor, P. (2011). Impact of innovative practices in environmentally focused firms: Moderating factors. International Journal of Environmental Research, 5(2), 425–434.Segarra-Oña, M. D. V., Peiró-Signes, A., & Mondéjar-Jiménez, J. (2013). Identifying variables affecting the proactive environmental orientation of firms: An empirical study. Polish Journal of Environmental Studies, 22(3), 873–880.Sharma, A., Thomas, D., & Konsynski, B. (2008). Strategic and institutional perspectives in the evaluation, adoption and early integration of radio frequency identification (RFID): An empirical investigation of current and potential adopters. Proceedings of the 41st Hawaii international conference on system science, Waikoloa, Big Island, Hawaii, USA (pp 407–420).Sigala, M. (2014). Customer involvement in sustainable supply chain management a research framework and implications in tourism. Cornell Hospitality Quarterly, 55(1), 76–88.Song, M., Peng, J., Liu, W., & An, Q. (2014). A PSBM model for environmental efficiency evaluation and its application. Polish Journal of Environmental Studies, 23(3), 893–900.Stern, N. (2006). The economics of climate change: The stern review. Cambridge: Cambridge University Press.Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111–147.Stone, G. W., & Wakefield, K. L. (2000). Eco-orientation: An extension of market orientation in an environmental context. Journal of Marketing Theory and Practice, 8(3), 21–31.Tenenhaus, M., Vinzi, V., Chatelin, J., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.Tse, R. Y. (2001). The implementation of EMS in construction firms: Case study in Hong Kong. Journal of Environmental Assessment Policy and Management, 3(2), 177–194.Turner, R. K. (2006). Sustainability auditing and assessment challenges. Building Research and Information, 34(3), 197–200.Van Bueren, E., & De Jong, J. J. (2007). Establishing sustainability: Policy successes and failures. Building Research and Information, 35(5), 543–556.Vanasupa, L., Chen, K. C., & Slivovsky, L. (2006). Global challenges as inspiration: A classroom strategy to foster social responsibility. Science and Engineering Ethics, 12(2), 373–380.Vastag, G., Kerekes, S., & Rondinelli, D. A. (1996). Evaluation of corporate environmental management approaches: A framework and application. International Journal of Production Economics, 43(2–3), 193–211

    Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data

    Get PDF
    International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.0137.6)×108ergcm2s1Hz1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.579.3)×109sr1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.93.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.72.1)×1025,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of 2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1  s and “long” ≳1  s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8

    Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences

    Get PDF
    Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

    Get PDF
    We search for gravitational-wave transients associated with gamma-ray bursts detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 October 2019 15:00 UTC). 105 gamma-ray bursts were analyzed using a search for generic gravitational-wave transients; 32 gamma-ray bursts were analyzed with a search that specifically targets neutron star binary mergers as short gamma-ray burst progenitors. We describe a method to calculate the probability that triggers from the binary merger targeted search are astrophysical and apply that method to the most significant gamma-ray bursts in that search. We find no significant evidence for gravitational-wave signals associated with the gamma-ray bursts that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each gamma-ray burst
    corecore