1,065 research outputs found

    Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations

    Full text link
    While the investors' responses to price changes and their price forecasts are well accepted major factors contributing to large price fluctuations in financial markets, our study shows that investors' heterogeneous and dynamic risk aversion (DRA) preferences may play a more critical role in the dynamics of asset price fluctuations. We propose and study a model of an artificial stock market consisting of heterogeneous agents with DRA, and we find that DRA is the main driving force for excess price fluctuations and the associated volatility clustering. We employ a popular power utility function, U(c,γ)=c1−γ−11−γU(c,\gamma)=\frac{c^{1-\gamma}-1}{1-\gamma} with agent specific and time-dependent risk aversion index, γi(t)\gamma_i(t), and we derive an approximate formula for the demand function and aggregate price setting equation. The dynamics of each agent's risk aversion index, γi(t)\gamma_i(t) (i=1,2,...,N), is modeled by a bounded random walk with a constant variance δ2\delta^2. We show numerically that our model reproduces most of the ``stylized'' facts observed in the real data, suggesting that dynamic risk aversion is a key mechanism for the emergence of these stylized facts.Comment: 17 pages, 7 figure

    Accurate Prediction of Protein Structural Class

    Get PDF
    Because of the increasing gap between the data from sequencing and structural genomics, the accurate prediction of the structural class of a protein domain solely from the primary sequence has remained a challenging problem in structural biology. Traditional sequence-based predictors generally select several sequence features and then feed them directly into a classification program to identify the structural class. The current best sequence-based predictor achieved an overall accuracy of 74.1% when tested on a widely used, non-homologous benchmark dataset 25PDB. In the present work, we built a multiple linear regression (MLR) model to convert the 440-dimensional (440D) sequence feature vector extracted from the Position Specific Scoring Matrix (PSSM) of a protein domain to a 4-dimensinal (4D) structural feature vector, which could then be used to predict the four major structural classes. We performed 10-fold cross-validation and jackknife tests of the method on a large non-homologous dataset containing 8,244 domains distributed among the four major classes. The performance of our approach outperformed all of the existing sequence-based methods and had an overall accuracy of 83.1%, which is even higher than the results of those predicted secondary structure-based methods

    Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila

    Get PDF
    In Drosophila, most individual olfactory receptor neurons (ORNs) project bilaterally to both sides of the brain1,2. Having bilateral rather than unilateral projections may represent a useful redundancy. However, bilateral ORN projections to the brain should also compromise the ability to lateralize odors. Nevertheless, walking or flying Drosophila reportedly turn toward their more strongly stimulated antenna3-5. Here we show that each ORN spike releases ~40% more neurotransmitter from the axon branch ipsilateral to the soma, as compared to the contralateral branch. As a result, when an odor activates the antennae asymmetrically, ipsilateral central neurons begin to spike a few milliseconds before contralateral neurons, and ipsilateral central neurons also fire at a 30-50% higher rate. We show that a walking fly can detect a 5% asymmetry in total ORN input to its left and right antennal lobes, and can turn toward the odor in less time than it requires the fly to complete a stride. These results demonstrate that neurotransmitter release properties can be tuned independently at output synapses formed by a single axon onto two target cells with identical functions and morphologies. Our data also show that small differences in spike timing and spike rate can produce reliable differences in olfactory behavior

    Production Scheduling Requirements to Smart Manufacturing

    Get PDF
    The production scheduling has attracted a lot of researchers for many years, however most of the approaches are not targeted to deal with real manufacturing environments, and those that are, are very particular for the case study. It is crucial to consider important features related with the factories, such as products and machines characteristics and unexpected disturbances, but also information such as when the parts arrive to the factory and when should be delivered. So, the purpose of this paper is to identify some important characteristics that have been considered independently in a lot of studies and that should be considered together to develop a generic scheduling framework to be used in a real manufacturing environment.authorsversionpublishe

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+μ+μ−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0μ+μ−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)μ+μ−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+μ+μ−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0μ+μ−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕμ+μ−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure

    Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for a new heavy charged vector boson W′W^\prime decaying to an electron-neutrino pair in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96\unit{TeV}. The data were collected with the CDF II detector and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No significant excess above the standard model expectation is observed and we set upper limits on σ⋅B(W′→eν)\sigma\cdot{\cal B}(W^\prime\to e\nu). Assuming standard model couplings to fermions and the neutrino from the W′W^\prime boson decay to be light, we exclude a W′W^\prime boson with mass less than 1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore