364 research outputs found
An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070
Black holes in binary systems execute patterns of outburst activity where two
characteristic X-ray states are associated with different behaviours observed
at radio wavelengths. The hard state is associated with radio emission
indicative of a continuously replenished, collimated, relativistic jet, whereas
the soft state is rarely associated with radio emission, and never
continuously, implying the absence of a quasi-steady jet. Here we report radio
observations of the black hole transient MAXI J1820070 during its 2018
outburst. As the black hole transitioned from the hard to soft state we
observed an isolated radio flare, which, using high angular resolution radio
observations, we connect with the launch of bi-polar relativistic ejecta. This
flare occurs as the radio emission of the core jet is suppressed by a factor of
over 800. We monitor the evolution of the ejecta over 200 days and to a maximum
separation of 10, during which period it remains detectable due to in-situ
particle acceleration. Using simultaneous radio observations sensitive to
different angular scales we calculate an accurate estimate of energy content of
the approaching ejection. This energy estimate is far larger than that derived
from state transition radio flare, suggesting a systematic underestimate of jet
energetics
Impact of a Prohibitive Versus Restrictive Tobacco Policy on Liver Transplant Candidate Outcomes
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150602/1/lt25497_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150602/2/lt25497.pd
Strong low-frequency radio flaring from Cygnus X-3 observed with LOFAR
We present Low-Frequency Array (LOFAR) 143.5-MHz radio observations of
flaring activity during 2019 May from the X-ray binary Cygnus X-3. Similar to
radio observations of previous outbursts from Cygnus X-3, we find that this
source was significantly variable at low frequencies, reaching a maximum flux
density of about 5.8 Jy. We compare our LOFAR light curve with contemporaneous
observations taken at 1.25 and 2.3 GHz with the RATAN-600 telescope, and at 15
GHz with the Arcminute Microkelvin Imager (AMI) Large Array. The initial
143.5-MHz flux density level, 2 Jy, is suggested to be the delayed and
possibly blended emission from at least some of the flaring activity that had
been detected at higher frequencies before our LOFAR observations had begun.
There is also evidence of a delay of more than four days between a bright flare
that initially peaked on May 6 at 2.3 and 15 GHz, and the corresponding peak
( 5.8 Jy) at 143.5 MHz. From the multi-frequency light curves, we
estimate the minimum energy and magnetic field required to produce this flare
to be roughly 10 erg and 40 mG, respectively, corresponding to a minimum
mean power of 10 erg s. Additionally, we show that the
broadband radio spectrum evolved over the course of our observing campaign; in
particular, the two-point spectral index between 143.5 MHz and 1.25 GHz
transitioned from being optically thick to optically thin as the flare
simultaneously brightened at 143.5 MHz and faded at GHz frequencies
Physiologically based modeling of lisofylline pharmacokinetics following intravenous administration in mice
Lisofylline (LSF), is the R-(â) enantiomer of the metabolite M1 of pentoxifylline, and is currently under development for the treatment of type 1 diabetes. The aim of the study was to develop a physiologically based pharmacokinetic (PBPK) model of LSF in mice and to perform simulations in order to predict LSF concentrations in human serum and tissues following intravenous and oral administration. The concentrations of LSF in serum, brain, liver, kidneys, lungs, muscle, and gut were determined at different time points over 60Â min by a chiral HPLC method with UV detection following a single intravenous dose of LSF to male CD-1 mice. A PBPK model was developed to describe serum pharmacokinetics and tissue distribution of LSF using ADAPT II software. All pharmacokinetic profiles were fitted simultaneously to obtain model parameters. The developed model characterized well LSF disposition in mice. The estimated intrinsic hepatic clearance was 5.427Â ml/min and hepatic clearance calculated using the well-stirred model was 1.22Â ml/min. The renal clearance of LSF was equal to zero. On scaling the model to humans, a good agreement was found between the predicted by the model and presented in literature serum LSF concentrationâtime profiles following an intravenous dose of 3Â mg/kg. The predicted LSF concentrations in human tissues following oral administration were considerably lower despite the twofold higher dose used and may not be sufficient to exert a pharmacological effect. In conclusion, the mouse is a good model to study LSF pharmacokinetics following intravenous administration. The developed PBPK model may be useful to design future preclinical and clinical studies of this compound
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at âs=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qqÌ
continuum events near the ΄(4S) resonance are presented. Using 20.8 fb-1 of data on the ΄(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(BâDs+X)=(10.93±0.19±0.58±2.73)% and B(BâDs*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+âÏÏ+ branching fraction uncertainty. The production cross sections Ï(e+e-âDs+X)ĂB(Ds+âÏÏ+)=7.55±0.20±0.34pb and Ï(e+e-âDs*±X)ĂB(Ds+âÏÏ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the ΄(4S) mass. The branching fractions ÎŁB(BâDs(*)+D(*))=(5.07±0.14±0.30±1.27)% and ÎŁB(BâDs*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
The analysis of latent fingermarks on polymer banknotes using MALDI-MS
In September 2016, the UK adopted a new Bank of England (BoE) ÂŁ5 polymer banknote, followed by the ÂŁ10 polymer banknote in September 2017. They are designed to be cleaner, stronger and have increased counterfeit resilience; however, fingermark development can be problematic from the polymer material as various security features and coloured/textured areas have been found to alter the effectiveness of conventional fingermark enhancement techniques (FETs). As fingermarks are one of the most widely used forms of identification in forensic cases, it is important that maximum ridge detail be obtained in order to allow for comparison. This research explores the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) profiling and imaging for the analysis of fingermarks deposited on polymer banknotes. The proposed methodology was able to obtain both physical and chemical information from fingermarks deposited in a range of scenarios including; different note areas, depletion series, aged samples and following conventional FETs. The analysis of forensically important molecular targets within these fingermarks was also explored, focussing specifically on cocaine. The ability of MALDI-MS to provide ridge detail and chemical information highlights the forensic applicability of this technique and potential for the analysis of fingermarks deposited onto this problematic surface
Microscopy in forensic science
This chapter examines the use of electron microscopy, atomic force microscopy and other analytical techniques in forensic investigation and research. These tools can be used to enhance examination of human remains and trace evidence to improve understanding of cause of death, victim identification or post mortem interval.A police-designed scenario is used to highlight trace evidence such as glass, gun shot residue and paint. The validity of forensic techniques is discussed, with reference to international standards, repeatability, and false convictions. Ballistic evidence is used to highlight the complexities in evidence interpretation, including manufacturing variability, environmental effects and likelihood ratios.The use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and other techniques in the development of forensic research is showcased, with particular examples from the field of fingerprints. Examples include improvements in the development of fingermarks from difficult surfaces, interaction of evidence types, and added intelligence from the crime scene, such as forensic timeline or gender of perpetrator
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 ± 0.1 mag hr-1) and luminous (Mg,peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (Lbol âł 3 Ă 1044 erg s-1), the short rise time (trise = 3 days in g band), and the blue colors at peak (g-r ⌠-0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (Teff âł 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (Mg ⌠Mr â mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E Îł,iso 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56
- âŠ