50 research outputs found

    Electroplated Multi-ring Core Planar Fluxgate

    Get PDF
    AbstractIn this paper we studied multi-ring planar fluxgate with different number of rings. In particular we investigated the effect of the number of rings on the sensitivity and noise of the sensors. Multi-ring cores were expected to return lower noise due to mutual compensation of uncorrelated noise of every ring. Nevertheless, we observed an increase of noise for cores with higher number of rings. We believe this is due to non-uniform composition of the electroplated film, which make the inner rings magnetostrictive and therefore source of larger noise

    Crossfield Sensitivity in AMR Sensors

    Get PDF
    We discuss the origin of the crossfield sensitivity of AMR sensors, the way how this error may influence the performance of an AMR compass and methods for its correction. Finally, we confirm the simple formulas experimentally. Crossfield may cause compass error up to 2.6 deg., depending on the compass orientation. The most effective way to suppress the crossfield error is using magnetic feedback, however this is not always possible. We suggest a method of processing of the SET/RESET sensor outputs which is more efficient than the usual averaging

    Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD

    Get PDF
    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon plasma phase boundary and characterising the plasma's properties. Hadron traits change in an equilibrated plasma. We exemplify this and discuss putative signals of the effects. Finally, since plasma formation is not an equilibrium process, we discuss recent developments in kinetic theory and its application to describing the evolution from a relativistic heavy ion collision to an equilibrated quark gluon plasma.Comment: 103 Pages, LaTeX, epsfig. To appear in Progress in Particle and Nuclear Physics, Vol. 4

    Race-Track Fluxgate With Adjustable Feedthrough

    No full text
    Improved shape of the race-track fluxgate sensor is suggested, which allows precise symetrization of the sensor and thus lower level of the feedthrough signal. The sensor has high untuned sensitivity (16.7 V/T per 1 turn) and low crossfield response thanks to the high shape anisotropy. The closed core and low cross-section guarantee low power consumption, low noise and stable offset. The sensor can be made resistant to vibrations and mechanical and temperature shocks. The sensitivity obtained after the proper tuning was 1.1 V/µT

    Magnetic sensors and magnetometers

    No full text

    Off-Center Error Correction of AMR Yokeless Current Transducer

    Get PDF
    We present a method of calibration and error correction of the AMR yokeless current transducer consisting of a circular array of eight anisotropic magnetoresistors (AMR) with one feedback compensation loop. The main sources of errors are the nonidentical parameters of AMR sensors and off-center position of the measured current. It is well known that AMR sensors from the same batch have 2% spread of the sensitivity; we found that the variation of the factor of the internal compensation coil is the same. We developed a novel calibration process using the readings of individual residual uncompensated voltages of the AMRs. The position of the current inside the measurement hole is estimated from the individual voltages considering the influence of external DC magnetic field such as the Earth’s field. During the calibration phase, the sensor outputs are measured for several positions of the current conductor inside the measuring hole. As a result of calibration the lookup table of error corrections is calculated and stored in the memory, and then these values are used for the correction during the measurement of the unknown current. This procedure reduces the off-center error from 0.4% to 0.06%

    Modelling and Measurement of Magnetically Soft Nanowire Arrays for Sensor Applications

    No full text
    Soft magnetic wires and microwires are currently used for the cores of magnetic sensors. Due to their low demagnetization, they contribute to the high sensitivity and the high spatial resolution of fluxgates, Giant Magnetoimpedance (GMI), and inductive sensors. The arrays of nanowires can be prepared by electrodeposition into predefined pores of a nanoporous polycarbonate membrane. While high coercivity arrays with square loops are convenient for information storage and for bistable sensors such as proximity switches, low coercivity cores are needed for linear sensors. We show that coercivity can be controlled by the geometry of the array: increasing the diameter of nanowires (20 µm in length) from 30 nm to 200 nm reduced the coercivity by a factor of 10, while the corresponding decrease in the apparent permeability was only 5-fold. Finite element simulation of nanowire arrays is important for sensor development, but it is computationally demanding. While an array of 2000 wires can be still modelled in 3D, this is impossible for real arrays containing millions of wires. We have developed an equivalent 2D model, which allows us to solve these large arrays with acceptable accuracy. Using this tool, we have shown that as a core of magnetic sensors, nanowires are efficiently employed only together with microcoils with diameter comparable to the nanowire length
    corecore