526 research outputs found

    Mountain glaciation drives rapid oxidation of rock-bound organic carbon

    Get PDF
    Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weathering. Oxidative weathering fluxes are two to three times higher in watersheds dominated by valley glaciers and exposed to frost shattering processes, compared to those with less glacial cover; a feature that we also observe in mountain watersheds globally. Consequently, we show that mountain glaciation can result in an atmospheric carbon dioxide source during weathering and erosion, as fresh minerals are exposed for weathering in an environment with high oxygen availability. This provides a counter mechanism against global cooling over geological time scales

    Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

    Full text link
    Here we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from an insulator to metal. We fabricated the field effect transistor structure on an oxide semiconductor, SrTiO3, using 100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate insulator. For positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO3 surface at room temperature, leading to the formation of a thin (~3 nm) metal layer with an extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits exotic thermoelectric behaviour.Comment: 21 pages, 12 figure

    Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector

    Get PDF
    Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency

    Social work and gender::An argument for practical accounts

    Get PDF
    This article contributes to the debate on gender and social work by examining dominant approaches within the field. Anti-discriminatory, woman-centered and intersectional accounts are critiqued for reliance upon both reification and isolation of gender. Via examination of poststructural, queer and trans theories within social work, the author then presents accounts based upon structural/materialist, ethnomethodological and discursive theories, in order to open up debates about conceptualization of gender. These are used to suggest that social work should adopt a focus on gender as a practical accomplishment that occurs within various settings or contexts

    Metabolite profiles of medulloblastoma for rapid and non-invasive detection of molecular disease groups

    Get PDF
    \ua9 2024 The AuthorsBackground: The malignant childhood brain tumour, medulloblastoma, is classified clinically into molecular groups which guide therapy. DNA-methylation profiling is the current classification ‘gold-standard’, typically delivered 3–4 weeks post-surgery. Pre-surgery non-invasive diagnostics thus offer significant potential to improve early diagnosis and clinical management. Here, we determine tumour metabolite profiles of the four medulloblastoma groups, assess their diagnostic utility using tumour tissue and potential for non-invasive diagnosis using in vivo magnetic resonance spectroscopy (MRS). Methods: Metabolite profiles were acquired by high-resolution magic-angle spinning NMR spectroscopy (MAS) from 86 medulloblastomas (from 59 male and 27 female patients), previously classified by DNA-methylation array (WNT (n = 9), SHH (n = 22), Group3 (n = 21), Group4 (n = 34)); RNA-seq data was available for sixty. Unsupervised class-discovery was performed and a support vector machine (SVM) constructed to assess diagnostic performance. The SVM classifier was adapted to use only metabolites (n = 10) routinely quantified from in vivo MRS data, and re-tested. Glutamate was assessed as a predictor of overall survival. Findings: Group-specific metabolite profiles were identified; tumours clustered with good concordance to their reference molecular group (93%). GABA was only detected in WNT, taurine was low in SHH and lipids were high in Group3. The tissue-based metabolite SVM classifier had a cross-validated accuracy of 89% (100% for WNT) and, adapted to use metabolites routinely quantified in vivo, gave a combined classification accuracy of 90% for SHH, Group3 and Group4. Glutamate predicted survival after incorporating known risk-factors (HR = 3.39, 95% CI 1.4–8.1, p = 0.025). Interpretation: Tissue metabolite profiles characterise medulloblastoma molecular groups. Their combination with machine learning can aid rapid diagnosis from tissue and potentially in vivo. Specific metabolites provide important information; GABA identifying WNT and glutamate conferring poor prognosis. Funding: Children with Cancer UK, Cancer Research UK, Children\u27s Cancer North and a Newcastle University PhD studentship

    Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains

    Get PDF
    The transfer of organic carbon from the terrestrial biosphere to the oceans via erosion and riverine transport constitutes an important component of the global carbon cycle. More than one third of this organic carbon flux comes from sediment-laden rivers that drain the mountains in the western Pacific region. This region is prone to tropical cyclones, but their role in sourcing and transferring vegetation and soil is not well constrained. Here we measure particulate organic carbon load and composition in the LiWu River, Taiwan, during cyclone-triggered floods. We correct for fossil particulate organic carbon using radiocarbon, and find that the concentration of particulate organic carbon from vegetation and soils is positively correlated with water discharge. Floods have been shown to carry large amounts of clastic sediment. Non-fossil particulate organic carbon transported at the same time may be buried offshore under high rates of sediment accumulation. We estimate that on decadal timescales, 77–92% of non-fossil particulate organic carbon eroded from the LiWu catchment is transported during large, cyclone-induced floods. We suggest that tropical cyclones, which affect many forested mountains within the Intertropical Convergence Zone, may provide optimum conditions for the delivery and burial of non-fossil particulate organic carbon in the ocean. This carbon transfer is moderated by the frequency, intensity and duration of tropical cyclones

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
    • …
    corecore