280 research outputs found

    Specific Human Astrocyte Subtype Revealed by Affinity Purified GFAP+1 Antibody; Unpurified Serum Cross-Reacts with Neurofilament-L in Alzheimer

    Get PDF
    The human GFAP splice variants GFAPΔ164 and GFAPΔexon6 both result in a GFAP protein isoform with a unique out-of-frame carboxy-terminus that can be detected by the GFAP+1 antibody. We previously reported that GFAP+1 was expressed in astrocytes and in degenerating neurons in Alzheimer's disease brains. In this study we aimed at further investigating the neuronal GFAP+1 expression and we started by affinity purifying the GFAP+1 antibody. The purified antibody resulted in a loss of neuronal GFAP+1 signal, although other antibodies directed against the amino- and carboxy-terminus of GFAPα still revealed GFAP-immunopositive neurons, as described before. With an in-depth analysis of a western blot, followed by mass spectrometry we discovered that the previously detected neuronal GFAP+1 expression was due to cross-reactivity of the antibody with neurofilament-L (NF-L). This was confirmed by double-label fluorescent immunohistochemistry and western blotting with the unpurified GFAP+1 antibody and an antibody against NF-L. Our data imply that NF-L can accumulate in some tangle-like structures in Alzheimer brains. More importantly, the purified GFAP+1 antibody clearly revealed a specific subtype of astrocytes in the adult human brain. These large astrocytes are present throughout the brain, e.g., along the subventricular zone, in the hippocampus, in the striatum and in the spinal cord of controls, Alzheimer, and Parkinson patients. The presence of a specific GFAP-isoform suggests a specialized function of these astrocytes

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Purine Nucleoside Phosphorylase mediated molecular chemotherapy and conventional chemotherapy: A tangible union against chemoresistant cancer

    Get PDF
    Background Late stage Ovarian Cancer is essentially incurable primarily due to late diagnosis and its inherent heterogeneity. Single agent treatments are inadequate and generally lead to severe side effects at therapeutic doses. It is crucial to develop clinically relevant novel combination regimens involving synergistic modalities that target a wider repertoire of cells and lead to lowered individual doses. Stemming from this premise, this is the first report of two- and three-way synergies between Adenovirus-mediated Purine Nucleoside Phosphorylase based gene directed enzyme prodrug therapy (PNP-GDEPT), docetaxel and/or carboplatin in multidrug-resistant ovarian cancer cells. Methods The effects of PNP-GDEPT on different cellular processes were determined using Shotgun Proteomics analyses. The in vitro cell growth inhibition in differentially treated drug resistant human ovarian cancer cell lines was established using a cell-viability assay. The extent of synergy, additivity, or antagonism between treatments was evaluated using CalcuSyn statistical analyses. The involvement of apoptosis and implicated proteins in effects of different treatments was established using flow cytometry based detection of M30 (an early marker of apoptosis), cell cycle analyses and finally western blot based analyses. Results Efficacy of the trimodal treatment was significantly greater than that achieved with bimodal- or individual treatments with potential for 10-50 fold dose reduction compared to that required for individual treatments. Of note was the marked enhancement in apoptosis that specifically accompanied the combinations that included PNP-GDEPT and accordingly correlated with a shift in the expression of anti- and pro-apoptotic proteins. PNP-GDEPT mediated enhancement of apoptosis was reinforced by cell cycle analyses. Proteomic analyses of PNP-GDEPT treated cells indicated a dowregulation of proteins involved in oncogenesis or cancer drug resistance in treated cells with accompanying upregulation of apoptotic- and tumour- suppressor proteins. Conclusion Inclusion of PNP-GDEPT in regular chemotherapy regimens can lead to significant enhancement of the cancer cell susceptibility to the combined treatment. Overall, these data will underpin the development of regimens that can benefit patients with late stage ovarian cancer leading to significantly improved efficacy and increased quality of life

    Calcium electroporation and electrochemotherapy for cancer treatment:Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy

    Get PDF
    Abstract Calcium electroporation is a novel anti-cancer treatment investigated in clinical trials. We explored cell sensitivity to calcium electroporation and electroporation with bleomycin, using viability assays at different time and temperature points, as well as heat calorimetry, lipidomics, and flow cytometry. Three cell lines: HT29 (colon cancer), MDA-MB231 (breast cancer), and HDF-n (normal fibroblasts) were investigated for; (a) cell survival dependent on time of addition of drug relative to electroporation (1.2 kV/cm, 8 pulses, 99 µs, 1 Hz), at different temperatures (37 °C, 27 °C, 17 °C); (b) heat capacity profiles obtained by differential scanning calorimetry without added calcium; (c) lipid composition by mass spectrometry; (d) phosphatidylserine in the plasma membrane outer leaflet using flow cytometry. Temperature as well as time of drug administration affected treatment efficacy in HT29 and HDF-n cells, but not MDA-MB231 cells. Interestingly the HT29 cell line displayed a higher phase transition temperature (approximately 20 °C) versus 14 °C (HDF-n) and 15 °C (MDA-MB231). Furthermore the HT29 cell membranes had a higher ratio of ethers to esters, and a higher expression of phosphatidylserine in the outer leaflet. In conclusion, lipid composition and heat capacity of the membrane might influence permeabilisation of cells and thereby the effect of calcium electroporation and electrochemotherapy

    Empirical Evaluation of Bone Extraction Protocols

    Get PDF
    The application of high-resolution analytical techniques to characterize ancient bone proteins requires clean, efficient extraction to obtain high quality data. Here, we evaluated many different protocols from the literature on ostrich cortical bone and moa cortical bone to evaluate their yield and relative purity using the identification of antibody-antigen complexes on enzyme-linked immunosorbent assay and gel electrophoresis. Moa bone provided an ancient comparison for the effectiveness of bone extraction protocols tested on ostrich bone. For the immunological part of this study, we focused on collagen I, osteocalcin, and hemoglobin because collagen and osteocalcin are the most abundant proteins in the mineralized extracellular matrix and hemoglobin is common in the vasculature. Most of these procedures demineralize the bone first, and then the remaining organics are chemically extracted. We found that the use of hydrochloric acid, rather than ethylenediaminetetraacetic acid, for demineralization resulted in the cleanest extractions because the acid was easily removed. In contrast, the use of ethylenediaminetetraacetic acid resulted in smearing upon electrophoretic separation, possibly indicating these samples were not as pure. The denaturing agents sodium dodecyl sulfate, urea, and guanidine HCl have been used extensively for the solubilization of proteins in non-biomineralized tissue, but only the latter has been used on bone. We show that all three denaturing agents are effective for extracting bone proteins. One additional method tested uses ammonium bicarbonate as a solubilizing buffer that is more appropriate for post-extraction analyses (e.g., proteomics) by removing the need for desalting. We found that both guanidine HCl and ammonium bicarbonate were effective for extracting many bone proteins, resulting in similar electrophoretic patterns. With the increasing use of proteomics, a new generation of scientists are now interested in the study of proteins from not only extant bone but also from ancient bone

    Measurement of CP violation parameters in B-0 -> DK*(0) decays

    Get PDF
    An analysis of B-0 --> DK*(0) decays is presented, where D represents an admixture of D-0 and (D) over bar (0) mesons reconstructed in four separate final states: K-pi(+), pi K--(+), K+K- and pi(+)pi(-). The data sample corresponds to 3.0 fb(-1) of proton-proton collision, collected by the LHCb experiment. Measurements of several observables are performed, including CP asymmetries. The most precise determination is presented of r(B)(DK*(0)), the magnitude of the ratio of the amplitudes of the decay B-0 --> DK+pi(-) with a b --> u or a b --> c transition, in a K pi mass region of +/- 50 MeV/c(2) around the K*(892) mass and for an absolute value of the cosine of the K*(0) helicity angle larger than 0.4

    Precision Measurement of the Mass and Lifetime of the Xi(-)(b) Baryon

    Get PDF
    We report on measurements of the mass and lifetime of the Xi(-)(b) baryon using about 1800 Xi(-)(b) decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment. The decays are reconstructed in the Xi(-)(b) -> Xi(0)(c)pi(-), Xi(0)(c) -> pK(-)K(-)pi(+) channel and the mass and lifetime are measured using the Lambda(0)(b) -> Lambda(+)(c)pi(-) mode as a reference. We measure M(Xi(-)(b)) ¿ M(Lambda(0)(b)) = 178.36 +/- 0.46 +/- 0.16 MeV/c(2), (tau Xi(-)(b)/tau Lambda(0)(b)) = 1.089 +/- 0.026 +/- 0.011, where the uncertainties are statistical and systematic, respectively. These results lead to a factor of 2 better precision on the Xi(-)(b) mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations

    Measurements of CP violation in the three-body phase space of charmless B-+/- decays

    Get PDF
    The charmless three- body decay modes B +/- -> K +/-pi(-)pi(-), B-+/- -> K-+/- (KK-)-K-+/-, B-+/- pi(-) K-K- and B-+/-pi(-)pi(-) are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb detector. The inclusive CP asymmetries of these modes are measured to be [GRAPHICS] where the first uncertainty is statistical, the second systematic, and the third is due to the CP asymmetry of the B +/- J Psi K-+/- reference mode. The distributions of these asymmetries are also studied as functions of position in the Dalitz plot and suggest contributions from rescattering and resonance interference processes

    First Observation of a Baryonic B-c(+) Decay

    Get PDF
    A baryonic decay of the B-c(+) meson, B-c(+) -> J/psi p (p) over bar pi(+) is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B-c(+) -> J/psi pi(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B-c(+) -> J/psi p (p) over bar pi(+)) /B(B-c(+) -> J/psi pi(+)) = 0.143(-0.034)(+0.039) (stat) +/- 0.013 (syst). The mass of the B-c(+) messon is determined as M(B-c(+)) = 6274.0 +/- 0.4 (sysst) MeV/c(2), using the B-c(+) -> J/psi p (p) over bar pi(+) channel
    corecore