199 research outputs found
Interaction of ENSO-driven Flood Variability and Anthropogenic Changes in Driving Channel Evolution: Corryong/ Nariel Creek, Australia
This is an Accepted Manuscript of an article published by Taylor & Francis in Australian Geographer on 03/09/2015, available online: 10.1080/00049182.2015.1048595Understanding the relative contributions of climatic and anthropogenic drivers of channel change are important to inform river management, especially in the context of environmental change. This global debate is especially pertinent in Australia as catchments have been severely altered since recent European settlement, and there is also strong evidence of cyclical climate variability controlling environmental systems. Corryong/Nariel Creek is an ideal setting to further study the interaction between climate and anthropogenic changes on channel evolution as it has experienced both significant periods of flood and drought, controlled by the El Niño Southern Oscillation (ENSO), and extensive anthropogenic changes. Since European settlement the floodplain has been completely cleared, the riparian zone almost entirely invaded by willows, and every reach of the channel has experienced some form of direct channel modification. Through the combined analysis of channel evolution, climate changes and anthropogenic history of the river it was found that both the ENSO-driven climate and anthropogenic drivers are significant, although at different scales of channel change. Significant straightening in response to land clearing in the early twentieth century occurred before any records of direct channel modifications. Following this, most river management works were in response to instabilities created in the clearing period, or to instabilities created by flooding triggering a new phase of instability in reaches which had already undergone stabilisation works. Overall, human activities triggered channel instability via land clearing, and management works since then generally exacerbated erosion during high flows that are driven by climate fluctuations. This research raises the interesting question of whether rivers in Australia have become more responsive to the ENSO cycle since the clearing of catchment and riparian vegetation, or whether the past response to climate variability was different
Hodge Theory on Metric Spaces
Hodge theory is a beautiful synthesis of geometry, topology, and analysis,
which has been developed in the setting of Riemannian manifolds. On the other
hand, spaces of images, which are important in the mathematical foundations of
vision and pattern recognition, do not fit this framework. This motivates us to
develop a version of Hodge theory on metric spaces with a probability measure.
We believe that this constitutes a step towards understanding the geometry of
vision.
The appendix by Anthony Baker provides a separable, compact metric space with
infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version,
to appear in Foundations of Computational Mathematics. Minor changes and
addition
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
Conformal Affine Toda Soliton and Moduli of IIB Superstring on
In this paper we interpret the hidden symmetry of the moduli space of IIB
superstring on in terms of the chiral embedding in
, which turns to be the conformal affine Toda model.
We review how the position of poles in the Riemann-Hilbert formulation
of dressing transformation and how the value of loop parameters in the
vertex operator of affine algebra determines the moduli space of the soliton
solutions, which describes the moduli space of the Green-Schwarz superstring.
We show also how this affine SU(4) symmetry affinize the conformal symmetry in
the twistor space, and how a soliton string corresponds to a Robinson
congruence with twist and dilation spin coefficients of twistor.Comment: Final version, Misprints corrected, Note adde
Genetic, abiotic and social influences on sex differentiation in cichlid fishes and the evolution of sequential hermaphroditism
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73799/1/j.1467-2979.2005.00184.x.pd
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
- âŠ