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Abstract Hodge theory is a beautiful synthesis of geometry, topology, and analysis
which has been developed in the setting of Riemannian manifolds. However, spaces
of images, which are important in the mathematical foundations of vision and pat-
tern recognition, do not fit this framework. This motivates us to develop a version
of Hodge theory on metric spaces with a probability measure. We believe that this
constitutes a step toward understanding the geometry of vision.

Appendix B by Anthony Baker discusses a separable, compact metric space with
infinite-dimensional α-scale homology.
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1 Introduction

Hodge Theory [22] studies the relationships of topology, functional analysis, and ge-
ometry of a manifold. It extends the theory of the Laplacian on domains of Euclidean
space or on a manifold.

However, there are a number of spaces, not manifolds, which could benefit from
an extension of Hodge theory, and that is the motivation here. In particular, we be-
lieve that a deeper analysis in the theory of vision could be led by developments of
Hodge type. Spaces of images are important for developing a mathematics of vision
(see e.g. Smale, Rosasco, Bouvrie, Caponnetto, and Poggio [35]), but these spaces are
far from possessing manifold structures. Other settings include spaces occurring in
quantum field theory, such as manifolds with singularities and/or non-uniform mea-
sures.

A number of previous papers have given us inspiration and guidance. For example,
there are those in combinatorial Hodge theory by Eckmann [16], Dodziuk [13], Fried-
man [19], and more recently Jiang, Lim, Yao, and Ye [23]. Recent decades have seen
extensions of the Laplacian from its classical setting to that of combinatorial graph
theory. See e.g. Fan Chung [9]. Robin Forman [18] provides useful extensions from
manifolds. Further extensions and relationships to the classical settings are given by
Belkin and Niyogi [2], Belkin, De Vito, and Rosasco [3], Coifman and Maggioni
[10], and Smale and Zhou [34].

Our approach starts with a metric space X (complete, separable), endowed with
a probability measure. For � ≥ 0, an �-form is a function on (� + 1)-tuples of points
in X. The coboundary operator δ is defined from �-forms to (� + 1)-forms in the
classical way following Čech, Alexander, and Spanier. Using the L2-adjoint δ∗ of
δ for a boundary operator, the �th order Hodge operator on �-forms is defined by
Δ� = δ∗δ+δδ∗. The harmonic �-forms on X are solutions of the equation Δ�(f ) = 0.
The �-harmonic forms reflect the �th homology of X, but have geometric features.
The harmonic form is a special representative of the homology class, and it may be
interpreted as one satisfying an optimality condition. Moreover, the Hodge equation
is linear, and by choosing a finite sample from X, one can obtain an approximation
of this representative by a linear equation in finite dimension.

There are two avenues for developing this Hodge theory. The first is a kernel ver-
sion corresponding to a Gaussian or a reproducing kernel Hilbert space. Here the
topology is trivial, but the analysis gives a substantial picture. The second version is
akin to the adjacency matrix of graph theory and corresponds to a threshold at a given
scale α. When X is finite, this picture overlaps with that of the combinatorial Hodge
theory referred to above.

For passage to a continuous Hodge theory, one encounters the following problem.



Found Comput Math (2012) 12:1–48 3

Problem 1 (Poisson Regularity Problem) If Δ�(f ) = g is continuous, under what
conditions is f continuous?

It is proved that a positive solution of the Poisson Regularity Problem implies
a complete Hodge decomposition for continuous �-forms in the “adjacency matrix”
setting (at any scale α), provided the L2-cohomology is finite dimensional. The prob-
lem is solved affirmatively for some cases as � = 0, or X is finite. One special case is
the following.

Problem 2 Under what conditions are harmonic �-forms continuous?

Here we have a solution for � = 0 and � = 1.
The solution of these regularity problems would be progress toward the important

cohomology identification problem: To what extent does the L2-cohomology coin-
cide with the classical cohomology? We have an answer to this question, as well as
a full Hodge theory in the special, but important case of Riemannian manifolds. The
following theorem is proved in Sect. 9 of this paper.

Theorem 1 Suppose that M is a compact Riemannian manifold, with strong convex-
ity radius r , and that k > 0 is an upper bound on the sectional curvatures. Then, if
0 < α < max{r,√π/2k}, our Hodge theory holds. That is, we have a Hodge decom-
position; the kernel of Δ� is isomorphic to the L2-cohomology and to the de Rham
cohomology of M in degree �.

More general conditions on a metric space X are given in Sect. 9.
Certain previous studies show how topology questions can give insight into the

study of images. Lee, Pedersen, and Mumford [25] have investigated 3 × 3 pixel
images from real-world data bases to find evidence for the occurrence of homol-
ogy classes of degree 1. Moreover, Carlsson, Ishkhanov, de Silva, and Zomorodian
[6] have found evidence for homology of surfaces in the same data base. Here we at-
tempt to give some foundations to these studies. Moreover, this general Hodge theory
could yield optimal representatives of the homology classes and provide systematic
algorithms. Note that the theory we describe here is defined over the real numbers;
its homology and cohomology groups are real vector spaces.

The problem of recognizing a surface is quite complex; in particular, the coho-
mology of a non-oriented surface has torsion, and it may seem naive to attempt to
recover such information from computations over R. Nevertheless, we shall argue
that Hodge theory provides a rich set of tools for object recognition, going strictly
beyond ordinary real cohomology.

Related in spirit to our L2-cohomology, but in a quite different setting, is the L2-
cohomology as introduced by Atiyah [1]. This is defined either via L2-differential
forms [1] or combinatorially [14], but again with an L2 condition. Questions like
the Hodge decomposition problem also arise in this setting, and its failure gives rise
to additional invariants, the Novikov–Shubin invariants. This theory has been exten-
sively studied; compare e.g. [8, 26, 27, 32] for important properties and geometric as
well as algebraic applications. In [15, 28, 33] approximation of the L2-Betti numbers
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for infinite simplicial complexes in terms of associated finite simplicial complexes
is discussed in increasing generality. Complete calculations of the spectrum of the
associated Laplacian are rarely possible, but compare [11] for one of these cases. The
monograph [29] provides rather complete information about this theory. Of partic-
ular relevance for the present paper is Pansu’s [31], where in Sect. 4 he introduces
an L2-Alexander–Spanier complex similar to ours. He uses it to prove homotopy in-
variance of L2-cohomology—that way identifying its cohomology with L2-de Rham
cohomology and L2-simplicial cohomology (under suitable assumptions).

Here is some background to the writing of this paper. Essentially Sects. 2 through
8 were in a finished paper by Nat Smale and Steve Smale, February 20, 2009. That
version stated that the coboundary operator of Theorem 4, Sect. 4 must have a closed
image. Thomas Schick pointed out that this assertion was wrong, and in fact produced
a counterexample, now Appendix A of this paper. Moreover, Schick and Laurent
Bartholdi set in motion the proofs that give the sufficient conditions for the finite
dimensionality of the L2-cohomology groups in Sect. 9 of this paper, and hence the
property that the image of the coboundary is closed. In particular, Theorems 7 and 8
were proved by Schick and Laurent Bartholdi.

Some conversations with Shmuel Weinberger were helpful.

2 An L2-Hodge Theory

In this section we construct a general Hodge theory for certain L2-spaces over X,
making use only of a probability measure on a set X.

As expected, our main result (Theorem 2) shows that homology is trivial under
these general assumptions. This is a backbone for our subsequent elaborations, in
which a metric will be taken into account to obtain non-trivial homology.

This is akin to the construction of Alexander-Spanier cohomology in topology,
in which a chain complex with trivial homology (which does not see the space’s
topology) is used to manufacture the standard Alexander-Spanier complex.

The amount of structure needed for our theory is minimal. First, let us introduce
some notation used throughout the section. X will denote a set endowed with a prob-
ability measure μ (μ(X) = 1). The �-fold Cartesian product of X will be denoted
as X� and μ� will denote the product measure on X�. A useful example to keep in
mind is: X a compact domain in Euclidean space, μ the normalized Lebesgue mea-
sure. More generally, one may take μ to be a Borel measure, which need not be the
Euclidean measure.

Furthermore, we will assume the existence of a kernel function K : X2 → R,
a non-negative, measurable, symmetric function which we will assume is in L∞(X ×
X), and for certain results, we will impose additional assumptions on K .

We may consider, for simplicity, the constant kernel K ≡ 1; but most proofs, in
this section, cover with no difficulty the general case, so we do not yet impose any
restriction to K . However, later sections will concentrate on K ≡ 1, which already
provides a very rich theory.

The kernel K may be used to conveniently encode the notion of locality in our
probability space X, for instance by defining it as the Gaussian kernel K(x,y) =
e− ‖x−y‖2

σ , for some σ > 0.
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Recall that a chain complex of vector spaces is a sequence of vector spaces Vj

and linear maps dj : Vj → Vj−1 such that the composition dj−1 ◦ dj = 0. A cochain
complex is the same, except that dj : Vj → Vj+1. The basic spaces in this section are
L2(X�), from which we will construct chain and cochain complexes:

· · · ∂�+1−−−−→ L2
(
X�+1

) ∂�−−−−→ L2
(
X�

) ∂�−1−−−−→ · · · ∂1−−−−→ L2(X)
∂0−−−−→ 0

(1)
and

0 −−−−→ L2(X)
δ0−−−−→ L2

(
X2

) δ1−−−−→ · · · δ�−1−−−−→ L2
(
X�+1

) δ�−−−−→ · · · .

(2)
Here, both ∂� and δ� will be bounded linear maps, satisfying ∂�−1 ◦ ∂� = 0 and δ� ◦

δ�−1 = 0. When there is no confusion, we will omit the subscripts of these operators.
We first define δ = δ�−1 : L2(X�) → L2(X�+1) by

δf (x0, . . . , x�) =
�∑

i=0

(−1)i
∏

j 
=i

√
K(xi, xj )f

(
x0, . . . , x̂i , . . . , x�

)
, (3)

where x̂i means that xi is deleted. This is similar to the coboundary operator of
Alexander–Spanier cohomology (see Spanier [36]). The square root in the formula
is unimportant for most of the sequel, and is there so that when we define the Lapla-
cian on L2(X), we recover the operator as defined in Gilboa and Osher [20]. We also
note that in the case where X is a finite set, δ0 is essentially the same as the gradient
operator developed by Zhou and Schölkopf [39] in the context of learning theory.

Proposition 1 For all � ≥ 0, δ : L2(X�) → L2(X�+1) is a bounded linear map.

Proof Clearly δf is measurable, as K is measurable. Since ‖K‖∞ < ∞, it follows
from the Schwarz inequality in R

� that

∣∣δf (x0, . . . , x�)
∣∣2 ≤ ‖K‖�∞

(
�∑

i=0

∣∣f
(
x0, . . . , x̂i , . . . , x�

)∣∣
)2

≤ ‖K‖�∞(� + 1)

�∑

i=0

∣∣f
(
x0, . . . , x̂i , . . . , x�

)∣∣2.

Now, integrating both sides of the inequality with respect to dμ�+1, using Fubini’s
theorem on the right side and the fact that μ(X) = 1 gives us

‖δf ‖L2(X�+1) ≤
√

‖K‖�∞(� + 1)‖f ‖L2(X�),

completing the proof. �

Essentially the same proof shows that δ is a bounded linear map on Lp , p ≥ 1.
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Proposition 2 For all � ≥ 1, δ� ◦ δ�−1 = 0.

Proof The proof is standard when K ≡ 1. For f ∈ L2(X�) we have

δ�(δ�−1f )(x0, . . . , x�+1)

=
�+1∑

i=0

(−1)i
∏

j 
=i

√
K(xi, xj )(δ�−1f )

(
x0, . . . , x̂i , . . . , x�+1

)

=
�+1∑

i=0

(−1)i
∏

j 
=i

√
K(xi, xj )

i−1∑

k=0

(−1)k

×
∏

n
=k,i

√
K(xk, xn)f

(
x0, . . . , x̂k, . . . , x̂i , . . . , x�+1

)

+
�+1∑

i=0

(−1)i
∏

j 
=i

√
K(xi, xj )

�+1∑

k=i+1

(−1)k−1

×
∏

n
=k,i

√
K(xk, xn)f

(
x0, . . . , x̂i , . . . , x̂k, . . . , x�+1

)
.

Now we note that on the right side of the second equality for given i, k with k < i,
the corresponding term in the first sum

(−1)i+k
∏

j 
=i

√
K(xi, xj )

∏

n
=k,i

√
K(xk, xn)f

(
x0, . . . , x̂k, . . . , x̂i , . . . , x�+1

)

cancels the term in the second sum where i and k are reversed

(−1)k+i−1
∏

j 
=k

√
K(xk, xj )

∏

n
=k,i

√
K(xk, xn)f

(
x0, . . . , x̂k, . . . , x̂i , . . . , x�+1

)

because, using the symmetry of K ,

∏

j 
=i

√
K(xi, xj )

∏

n
=k,i

√
K(xk, xn) =

∏

j 
=k

√
K(xk, xj )

∏

n
=k,i

√
K(xi, xn).

�

It follows that (2) and (3) define a cochain complex. We now define, for � > 0,
∂� : L2(X�+1) → L2(X�) by

∂�g(x) =
�∑

i=0

(−1)i
∫

X

(
�−1∏

j=0

√
K(t, xj )

)

g(x0, . . . , xi−1, t, xi, . . . , x�−1)dμ(t), (4)

where x = (x0, . . . , x�−1) and for � = 0 we define ∂0 : L2(X) → 0.

Proposition 3 For all � ≥ 0, ∂� : L2(X�+1) → L2(X�) is a bounded linear map.
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Proof For g ∈ L2(X�+1), we have
∣∣∂�g(x0, . . . , x�−1)

∣∣

≤ ‖K‖(�−1)/2∞
�∑

i=0

∫

X

∣∣g(x0, . . . , xi−1, t, . . . , x�−1)
∣∣dμ(t)

≤ ‖K‖(�−1)/2∞
�∑

i=0

(∫

X

∣∣g(x0, . . . , xi−1, t, . . . , x�−1)
∣∣2 dμ(t)

) 1
2

≤ ‖K‖(�−1)/2∞
√

� + 1

(
�∑

i=0

∫

X

∣∣g(x0, . . . , xi−1, t, . . . , x�−1)
∣∣2 dμ(t)

) 1
2

,

where we have used the Schwarz inequalities for L2(X) and R
�+1 in the second and

third inequalities respectively. Now, square both sides of the inequality and integrate
over X� with respect to μ� and use Fubini’s theorem, arriving at the following bound
to finish the proof:

‖∂�g‖L2(X�) ≤ ‖K‖(�−1)/2∞ (� + 1)‖g‖L2(X�+1). �

Remark 1 As in Proposition 1, we can replace L2 by Lp , for p ≥ 1.

We now show that (for p = 2) ∂� is actually the adjoint of δ�−1 (which gives a
second proof of Proposition 3).

Proposition 4 δ∗
�−1 = ∂�. That is, 〈δ�−1f,g〉L2(X�+1) = 〈f, ∂�g〉L2(X�) for all f ∈

L2(X�) and g ∈ L2(X�+1).

Proof For f ∈ L2(X�) and g ∈ L2(X�+1) we have, by Fubini’s theorem,

〈δ�−1f,g〉 =
�∑

i=0

(−1)i
∫

X�+1

∏

j 
=i

√
K(xi, xj )f

(
x0, . . . , x̂i , . . . , x�

)
g(x0, . . . , x�)dμ�+1

=
�∑

i=0

(−1)i
∫

X�

f
(
x0, . . . , x̂i , . . . , x�

)

×
∫

X

∏

j 
=i

√
K(xi, xj )g(x0, . . . , x�)dμ(xi)dμ(x0) · · · d̂μ(xi) · · ·dμ(x�).

In the ith term on the right, relabeling the variables x0, . . . , x̂i , . . . x� with y =
(y0, . . . , y�−1) (that is, yj = xj+1 for j ≥ i) and putting the sum inside the integral
gives us
∫

X�

f (y)

�∑

i=0

(−1)i
∫

X

�−1∏

j=0

√
K(xi, yj )g(y0, . . . , yi−1, xi, yi, . . . , y�−1)dμ(xi)dμ�(y)

which is just 〈f, ∂�g〉. �
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We note, as a corollary, that ∂�−1 ◦ ∂� = 0, and thus (1) and (4) define a chain
complex. We can thus define the homology and cohomology spaces (real coefficients)
of (1) and (2) as follows. Since Im ∂� ⊂ Ker ∂�−1 and Im δ�−1 ⊂ Ker δ� we define the
quotient spaces

H�(X) = H�(X,K,μ) = Ker ∂�−1

Im ∂�

, H�(X) = H�(X,K,μ) = Ker δ�

Im δ�−1
(5)

which will be referred to as the L2-homology and cohomology of degree �, respec-
tively. In later sections, with additional assumptions on X and K , we will investigate
the relation between these spaces and the topology of X, for example, the Alexander–
Spanier cohomology. In order to proceed with the Hodge theory, we consider δ to be
the analogue of the exterior derivative d on �-forms from differential topology, and
∂ = δ∗ as the analogue of d∗. We then define the Laplacian (in analogy with the
Hodge Laplacian) to be Δ� = δ∗

� δ� + δ�−1δ
∗
�−1. Clearly, Δ� : L2(X�+1) → L2(X�+1)

is a bounded, self-adjoint, positive semi-definite operator, since for f ∈ L2(X�+1),

〈Δf,f 〉 = 〈
δ∗δf,f

〉 + 〈
δδ∗f,f

〉 = ‖δf ‖2 + ∥∥δ∗f
∥∥2

, (6)

where we have omitted the subscripts on the operators. The Hodge theorem will give
a decomposition of L2(X�+1) in terms of the image spaces under δ, δ∗ and the kernel
of Δ, and also identify the kernel of Δ with H�(X,K,μ). Elements of the kernel of
Δ will be referred to as harmonic. For � = 0, one easily computes that

1

2
Δ0f (x) = D(x)f (x) −

∫

X

K(x, y)f (y)dμ(y) where D(x) =
∫

X

K(x, y)dμ(y)

which, when K is a positive definite kernel on X, is the Laplacian defined in Smale
and Zhou [34] (see Sect. 5 below).

Remark 2 It follows from (6) that Δf = 0 if and only if δ�f = 0 and δ∗
�−1f = 0, and

so KerΔ� = Ker δ� ∩ Ker δ∗
�−1; in other words, a form is harmonic if and only if it is

both closed and coclosed.

The main goal of this section is the following L2-Hodge theorem.

Theorem 2 Assume that 0 < σ ≤ K(x,y) ≤ ‖K‖∞ < ∞ almost everywhere. Then
we have trivial L2-cohomology in the following sense:

im(δ�) = ker(δ�+1) ∀� ≥ 0.

In particular, H�(X) = 0 for � > 0 and we have by Lemma 1 the (trivial) orthogonal,
direct sum decomposition

L2(X�+1) = Im δ�−1 ⊕ Im δ∗
� ⊕ KerΔ�

and the cohomology space H�(X,K,μ) is isomorphic to KerΔ�, with each equiva-
lence class in the former having a unique representative in the latter.

For � > 0, of course KerΔ� = {0}. For � = 0, KerΔ0 = ker δ0 ∼= R consists pre-
cisely of the constant functions.
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In subsequent sections we will have occasion to use the L2-spaces of alternating
functions:

L2
a

(
X�+1) = {

f ∈ L2(X�+1) : f (x0, . . . , x�) = (−1)signσ f (xσ(0), . . . , xσ(�)),

σ a permutation
}
.

Due to the symmetry of K , it is easy to check that the coboundary δ preserves the
alternating property, and thus Propositions 1 through 4, as well as formulas (1), (2),
(5), and (6) hold with L2

a in place of L2. We note that the alternating map

Alt : L2(X�+1) → L2
a

(
X�+1)

defined by

Alt(f )(x0, . . . , x�) := 1

(� + 1)!
∑

σ∈S�+1

(−1)signσ f (xσ(0), . . . , xσ(�))

is a projection relating the two definitions of �-forms. It is easy to compute that this
is actually an orthogonal projection; its inverse is just the inclusion map.

Remark 3 It follows from homological algebra that these maps induce isomorphisms,
inverse to each other, of the cohomology groups we have defined. Indeed, there is a
standard chain homotopy between a variant of the projection Alt and the identity,
given by hf (x0, . . . , xn) = 1

n

∑n
i=0 f (xi, x0, . . . , xn). Because many formulas sim-

plify, from now on we will usually work with the subcomplex of alternating func-
tions.

We first recall some relevant facts in a more abstract setting.

Lemma 1 (Hodge Lemma) Suppose we have the cochain and corresponding dual
chain complexes

0 −−−−→ V0
δ0−−−−→ V1

δ1−−−−→ · · · δ�−1−−−−→ V�
δ�−−−−→

· · · δ∗
�−−−−→ V�

δ∗
�−1−−−−→ V�−1

δ∗
�−2−−−−→ · · · δ∗

0−−−−→ V0 −−−−→ 0

where for � = 0,1, . . . , V�, 〈 , 〉� is a Hilbert space, and δ� (and thus δ∗
� , the adjoint

of δ�) is a bounded linear map with δ2 = 0. Let Δ� = δ∗
� δ� + δ�−1δ

∗
�−1. Then the

following are equivalent:

(1) δ� has closed range for all �.
(2) δ∗

� has closed range for all �.
(3) Δ� = δ∗

� δ� + δ�−1δ
∗
�−1 has closed range for all �.

Furthermore, if one of these conditions holds, we have the orthogonal, direct sum
decomposition into closed subspaces

V� = Im δ�−1 ⊕ Im δ∗
� ⊕ KerΔ� (7)
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and the quotient space Ker δ�

Im δ�−1
is isomorphic to KerΔ�, with each equivalence class

in the former having a unique representative in the latter.

Proof We first assume conditions (1) and (2) above and prove the decomposition. For
all f ∈ V�−1 and g ∈ V�+1 we have

〈
δ�−1f, δ∗

�g
〉
�
= 〈δ�δ�−1f,g〉�+1 = 0.

Also, as in (6), Δ�f = 0 if and only if δ�f = 0 and δ∗
�−1f = 0. Therefore, if f ∈

KerΔ�, then for all g ∈ V�−1 and h ∈ V�+1

〈f, δ�−1g〉� = 〈
δ∗
�−1f,g

〉
�−1 = 0 and

〈
f, δ∗

�h
〉
�
= 〈δ�f,h〉�+1 = 0

and thus Im δ�−1, Im δ∗
� , and KerΔ� are mutually orthogonal. We now show that

KerΔ� ⊇ (Im δ�−1 ⊕ Im δ∗
� )⊥. This implies the orthogonal decomposition

V� = ker(Δ�) ⊕ Im(δ�−1) ⊕ Im(δ∗
� ). (8)

If (1) and (2) hold, this implies the Hodge decomposition (7). Let v ∈ (Im δ�−1 ⊕
Im δ∗

� )⊥. Then, for all w ∈ V�,

〈δ�v,w〉 = 〈
v, δ∗

�w
〉 = 0 and

〈
δ∗
�−1v,w

〉 = 〈v, δ�−1w〉 = 0,

which implies that δ�v = 0 and δ∗
�−1v = 0. As noted above, this implies that Δ�v = 0,

proving the decomposition.
We define an isomorphism

P̃ : Ker δ�

Im δ�−1
→ KerΔ�

as follows. Let P : V� → KerΔ� be the orthogonal projection. Then, for an equiva-
lence class [f ] ∈ Ker δ�

Im δ�−1
define P̃ ([f ]) = P(f ). Note that if [f ] = [g] then f = g+h

with h ∈ Im δ�−1, and therefore P(f ) − P(g) = P(h) = 0 by the orthogonal decom-
position, and so P̃ is well defined, and linear as P is linear. If P̃ ([f ]) = 0 then
P(f ) = 0 and so f ∈ Im δ�−1 ⊕ Im δ∗

� . But f ∈ Ker δ�, and so, for all g ∈ V�+1 we
have 〈δ∗

�g, f 〉 = 〈g, δ�f 〉 = 0, and thus f ∈ Im δ�−1 and therefore [f ] = 0 and P̃ is
injective. On the other hand, P̃ is surjective because, if w ∈ KerΔ�, then w ∈ Ker δ�

and so P̃ ([w]) = P(w) = w.
Finally, the equivalence of conditions (1), (2), and (3) is a general fact about

Hilbert spaces and Hilbert cochain complexes. If δ : V → H is a bounded linear
map between Hilbert spaces, and δ∗ is its adjoint, and if Im δ is closed in H , then
Im δ∗ is closed in V . We include the proof for completeness. Since Im δ is closed, the
bijective map

δ : (Ker δ)⊥ → Im δ

is an isomorphism by the open mapping theorem. It follows that the norm of δ−1,

inf
{‖δ(v)‖ : v ∈ (Ker δ)⊥, ‖v‖ = 1

}
> 0.
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Since Im δ ⊂ (Ker δ∗)⊥, it suffices to show that

δ∗δ : (Ker δ)⊥ → (Ker δ)⊥

is an isomorphism, for then Im δ∗ = (Ker δ)⊥, which is closed. However, this is es-
tablished by noting that 〈δ∗δv, v〉 = ‖δv‖2 and the above inequality imply that

inf
{〈

δ∗δv, v
〉 : v ∈ (Ker δ)⊥, ‖v‖ = 1

}
> 0.

The general Hodge decomposition (8) implies that Δ� = δ∗
� δ� acts on ker(Δ�) as

the zero operator (trivially), as δ∗
� δ� : im(δ∗

� ) → im(δ∗
� ) (preserving this subspace) and

as δ�−1δ
∗
�−1 on im(δ�−1), also mapping this subspace to itself.

Now the image of an operator on a Hilbert space is closed if and only if it maps
the complement of its kernel isomorphically (with bounded inverse) to its image. As
the kernel of δ� is the complement of the image of δ∗

� and the kernel of δ∗
�−1 is the

complement of the image of δ�, this implies indeed that Im(Δ�) is closed if and only
if (1) and (2) are satisfied.

This finishes the proof of the lemma. �

Corollary 1 For all � ≥ 0 the following are isomorphisms, provided Im(δ) is closed:

δ� : Im δ∗
� → Im δ� and δ∗

� : Im δ� → Im δ∗
� .

Proof The first map is injective because if δ(δ∗f ) = 0 then 0 = 〈δδ∗f,f 〉 = ‖δ∗f ‖2

and so δ∗f = 0. It is surjective because of the decomposition (omitting the subscripts)

δ(V ) = δ
(
Im δ ⊕ Im δ∗ ⊕ KerΔ

) = δ
(
Im δ∗)

since δ is zero on the first and third summands of the left side of the second equality.
The argument for the second map is the same. �

The difficulty in applying the Hodge Lemma is in verifying that either δ or δ∗ has
closed range. A sufficient condition is the following, first pointed out to us by Shmuel
Weinberger.

Proposition 5 Suppose that, in the context of Lemma 1, the L2-cohomology space
Ker δ�/ Im δ�−1 is finite dimensional. Then δ�−1 has closed range.

Proof We show more generally that if T : B → V is a bounded linear map of Ba-
nach spaces, with ImT having finite codimension in V , then ImT is closed in V .
We can assume without loss of generality that T is injective, by replacing B with
B/KerT if necessary. Thus T : B → ImT ⊕ F = V where dimF < ∞. Now de-
fine G : B ⊕ F → V by G(x,y) = T x + y. G is bounded, surjective and injective,
and thus an isomorphism by the open mapping theorem. Therefore, G(B) = T (B) is
closed in V . �

Consider the special case where K(x,y) = 1 for all x, y in X. Let ∂0
� be the cor-

responding operator in (4). We have
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Lemma 2 For � > 1, Im ∂0
� = Ker∂0

�−1, and Im ∂0
1 = {1}⊥ is the orthogonal comple-

ment of the constants in L2(X).

Under the assumption K ≡ 1, we can already finish the proof of Theorem 2; the
general case is proven later. Indeed, Lemma 2 implies that Im ∂� is closed for all �

since null spaces and orthogonal complements are closed, and in fact shows that the
homology (5) in this case is trivial for � > 0 and one dimensional for � = 0.

Proof of Lemma 2 Let h ∈ {1}⊥ ⊂ L2(X). Define g ∈ L2(X2) by g(x, y) = h(y).
Then from (4),

∂0
1 g(x0) =

∫

X

(
g(t, x0) − g(x0, t)

)
dμ(t) =

∫

X

(
h(x0) − h(t)

)
dμ(t) = h(x0)

since μ(X) = 1 and
∫
X

hdμ = 0. It can be easily checked that ∂0
1 maps L2(X2)

into {1}⊥, thus proving the lemma for � = 1. For � > 1 let h ∈ Ker∂0
�−1. Define

g ∈ L2(X�+1) by g(x0, . . . , x�) = (−1)�h(x0, . . . , x�−1). Then by (4),

∂0
� g(x0, . . . , x�−1) =

�∑

i=0

(−1)i
∫

X

g(x0, . . . , xi−1, t, xi, . . . , x�−1)dμ(t)

= (−1)�
�−1∑

i=0

(−1)i
∫

X

h(x0, . . . , xi−1, t, xi, . . . , x�−2)dμ(t)

+ (−1)2�h(x0, . . . , x�−1)

= (−1)�∂0
�−1h(x0, . . . , x�−2) + h(x0, . . . , x�−1)

= h(x0, . . . , x�−1)

since ∂0
�−1h = 0, finishing the proof. �

The next lemma give some general conditions on K that guarantee ∂� has closed
range.

Lemma 3 Assume that K(x,y) ≥ σ > 0 for all x, y ∈ X. Then Im ∂� is closed for
all �. In fact, Im ∂� = Ker ∂�−1 for � > 1 and has codimension one in L2(X) for � = 1.

Proof Let M� : L2(X�) → L2(X�) be the multiplication operator

M�(f )(x0, . . . , x�) =
∏

j 
=k

√
K(xj , xk)f (x0, . . . , x�).

Since K ∈ L∞(X2) and is bounded below by σ , M� clearly defines an isomorphism.
The lemma then follows from Lemma 2 and the observation that

∂� = M−1
�−1 ◦ ∂0

� ◦ M�. �
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Theorem 2 now follows from the Hodge Lemma and Lemma 3. We note that
Lemmas 2, 3, and Theorem 2 hold in the alternating setting, when L2(X�) is replaced
with L2

a(X
�); so the cohomology is also trivial in that setting.

For background, one could refer to Munkres [30] for the algebraic topology, Lang
[24] for the analysis, and Warner [37] for the geometry.

3 Metric Spaces

For the rest of the paper, we assume that X is a complete, separable metric space, and
that μ is a Borel probability measure on X, and K is a continuous function on X2

(as well as symmetric, non-negative, and bounded as in Sect. 2). We will also assume
throughout the rest of the paper that μ(U) > 0 for U any non-empty open set.

The goal of this section is obtaining a Hodge decomposition for continuous alter-
nating functions. Let C(X�+1) denote the continuous functions on X�+1. We will use
the following notation:

C�+1 = C
(
X�+1) ∩ L2

a

(
X�+1) ∩ L∞(

X�+1).

Note that

δ : C�+1 → C�+2 and ∂ : C�+1 → C�

are well-defined linear maps. The only thing to check is that δ(f ) and ∂(f ) are con-
tinuous and bounded if f ∈ C�+1. In the case of δ(f ) this is obvious from (3). The
following proposition from analysis, (4), and the fact that μ is Borel imply that ∂(f )

is bounded and continuous.

Proposition 6 Let Y and X be metric spaces, μ a Borel measure on X, and let
M,g ∈ C(Y × X) ∩ L∞(Y × X). Then dg ∈ C(X) ∩ L∞(X), where

dg(x) =
∫

X

M(x, t)g(x, t)dμ(t).

Proof The fact that dg is bounded follows easily from the definition and properties
of M and g, and continuity follows from a simple application of the dominated con-
vergence theorem, proving the proposition. �

Therefore, we have the chain complexes

· · · ∂�+1−−−−→ C�+1 ∂�−−−−→ C� ∂�−1−−−−→ · · · ∂1−−−−→ C1 ∂0−−−−→ 0

and

0 −−−−→ C1 δ0−−−−→ C2 δ1−−−−→ · · · δ�−1−−−−→ C�+1 δ�−−−−→ · · · .

In this setting we will prove the following.
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Theorem 3 Assume that K satisfies the hypotheses of Theorem 2, and is continuous.
Then we have the orthogonal (with respect to L2) direct sum decomposition

C�+1 = δ
(
C�

) ⊕ ∂
(
C�+2) ⊕ KerC Δ,

where KerC Δ denotes the subspace of elements in KerΔ that are in C�+1.

As in Theorem 2, the third summand is trivial except when � = 0, in which case
it consists of the constant functions. We first assume that K ≡ 1. The proof follows
from a few propositions. In the remainder of the section, Im δ and Im ∂ will refer to
the image spaces of δ and ∂ as operators on L2

a . The next proposition gives formulas
for ∂ and Δ on alternating functions.

Proposition 7 For f ∈ L2
a(X

�+1) we have

∂f (x0, . . . , x�−1) = (� + 1)

∫

X

f (t, x0, . . . , x�−1)dμ(t)

and

Δf (x0, . . . , x�) = (� + 2)f (x0, . . . , x�) − 1

� + 1

�∑

i=0

∂f
(
x0, . . . , x̂i , . . . , x�

)
.

Proof The first formula follows immediately from (4) and the fact that f is alternat-
ing. The second follows from a simple calculation using (3), (4), and the fact that f

is alternating. �

Let P1, P2, and P3 be the orthogonal projections implicit in Theorem 2,

P1 : L2
a(X

�+1) → Im δ, P2 : L2
a(X

�+1) → Im ∂, and P3 : L2
a(X

�+1) → KerΔ.

Proposition 8 Let f ∈ C�+1. Then P1(f ) ∈ C�+1.

Proof It suffices to show that P1(f ) is continuous and bounded. Let g = P1(f ). It
follows from Theorem 2 that ∂f = ∂g, and therefore ∂g is continuous and bounded.
Since δg = 0, we have, for t, x0, . . . , x� ∈ X,

0 = δg(t, x0, . . . , x�) = g(x0, . . . , x�) −
�∑

i=0

(−1)ig
(
t, x0, . . . , x̂i , . . . , x�

)
.

Integrating over t ∈ X gives us

g(x0, . . . , x�) =
∫

X

g(x0, . . . , x�)dμ(t) =
�∑

i=0

(−1)i
∫

X

g
(
t, x0, . . . , x̂i , . . . , x�

)
dμ(t)

= 1

� + 1

�∑

i=0

(−1)i∂g
(
x0, . . . , x̂i , . . . , x�

)
.

As ∂g is continuous and bounded, this implies g is continuous and bounded. �
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Corollary 2 If f ∈ C�+1, then P2(f ) ∈ C�+1.

This follows from the Hodge decomposition (Theorem 2) and the fact that P3(f )

is continuous and bounded (being a constant).
The following proposition can be thought of as analogous to a regularity result in

elliptic PDEs. It states that solutions to Δu = f , f continuous, which are a priori in
L2 are actually continuous.

Proposition 9 If f ∈ C�+1 and Δu = f , u ∈ L2
a(X

�+1), then u ∈ C�+1.

Proof From Proposition 7 (with u in place of f ), we have

Δu(x0, . . . , x�) = (� + 2)u(x0, . . . , x�) − 1

� + 1

�∑

i=0

∂u
(
x0, . . . , x̂i , . . . , x�

)

= f (x0, . . . , x�)

and solving for u, we get

u(x0, . . . , x�) = 1

� + 2
f (x0, . . . , x�) + 1

(� + 2)(� + 1)

�∑

i=0

∂u
(
x0, . . . , x̂i , . . . , x�

)
.

It therefore suffices to show that ∂u is continuous and bounded. However, it is easy
to check that Δ ◦ ∂ = ∂ ◦ Δ and thus

Δ(∂u) = ∂Δu = ∂f

is continuous and bounded. But then, again using Proposition 7,

Δ(∂u)(x0, . . . , x�−1) = (� + 1)∂u(x0, . . . , x�−1)

− 1

�

�−1∑

i=0

(−1)i∂(∂u)
(
x0, . . . , x̂i , . . . , x�−1

)

and so, using ∂2 = 0, we get

(� + 1)∂u = ∂f

which implies that ∂u is continuous and bounded, finishing the proof. �

Proposition 10 If g ∈ C�+1 ∩ Im δ, then g = δh for some h ∈ C�.

Proof From the corollary of the Hodge lemma, let h be the unique element in Im ∂

with g = δh. Now ∂g is continuous and bounded, and

∂g = ∂δh = ∂δh + δ∂h = Δh

since ∂h = 0. But now h is continuous and bounded from Proposition 9. �
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Proposition 11 If g ∈ C�+1 ∩ L2
a(X

�+1), then g = ∂h for some h ∈ C�+2.

The proof is identical to the one for Proposition 10.
Theorem 3, in the case K ≡ 1, now follows from Propositions 8 through 11. The

proof easily extends to general K which is bounded below by a positive constant.

4 Hodge Theory at Scale α

As seen in Sects. 2 and 3, the chain and cochain complexes constructed on the whole
space yield trivial cohomology groups. In order to have a theory that gives us topo-
logical information about X, we define our complexes on a neighborhood of the di-
agonal, and restrict the boundary and coboundary operator to these complexes. The
corresponding cohomology can be considered a cohomology of X at a scale, with
the scale being the size of the neighborhood. We will assume throughout this section
that (X,d) is a compact metric space. For x, y ∈ X�, � > 1, this induces a metric
compatible with the product topology,

d�(x, y) = max
{
d(x0, y0), . . . , d(x�−1, y�−1)

}
.

The diagonal D� of X� is just {x ∈ X� : xi = xj , i, j = 0, . . . , � − 1}. For α > 0
we let U�

α be the α-neighborhood of the diagonal in X�, namely

U�
α = {

x ∈ X� : d�(x,D�) ≤ α
}

= {
x ∈ X� : ∃t ∈ X such that d(xi, t) ≤ α, i = 0, . . . , � − 1

}
.

Observe that U�
α is closed and that for α ≥ diameter X, U�

α = X�.
Alternatively, one could have defined neighborhoods V �

α as those x ∈ X� such
that d(xi, xj ) ≤ α whenever 0 ≤ i, j < �. This definition appears in the Vietoris-Rips
complex; see Remark 7. Both definitions are very close, in the sense that V �

α ⊆ U�
α ⊆

V �
2α .

The measure μ� induces a Borel measure on U�
α which we will simply denote by

μ� (not a probability measure). For simplicity, we will take K ≡ 1 throughout this
section and consider only alternating functions in our complexes. We first discuss
the L2-theory, and thus our basic spaces will be L2

a(U
�
α), the space of alternating

functions on U�
α that are in L2 with respect to μ�, � > 0. Note that if (x0, . . . , x�) ∈

U�+1
α , then (x0, . . . , x̂i , . . . , x�) ∈ U�

α for i = 0, . . . , �. It follows that if f ∈ L2
a(U

�
α),

then δf ∈ L2
a(U

�+1
α ). We therefore have the well-defined cochain complex

0 −−−−→ L2
a

(
U1

α

) δ−−−−→ L2
a

(
U2

α

) δ−−−−→ · · ·

δ−−−−→ L2
a

(
U�

α

) δ−−−−→ L2
a

(
U�+1

α

) · · · .

Since ∂ = δ∗ depends on the integral, its expression will be different from the one in
(4). We define a “slice” by

Sx0···x�−1 = {
t ∈ X : (x0, . . . , x�−1, t) ∈ U�+1

α

}
.
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We note that, for Sx0···x�−1 to be non-empty, (x0, . . . , x�−1) must be in U�
α . Further-

more,

U�+1
α = {

(x0, . . . , x�) : (x0, . . . , x�−1) ∈ U�
α, and x� ∈ Sx0···x�−1

}
.

It follows from the proof of Proposition 1 of Sect. 2 and the fact that K ≡ 1,
that δ : L2

a(U
�
α) → L2

a(U
�+1
α ) is bounded and that ‖δ‖ ≤ � + 1, and therefore δ∗ is

bounded. The adjoint of the operator δ : L2
a(U

�
α) → L2

a(U
�+1
α ) will be denoted, as

before, by either ∂ or δ∗ (without the subscript �).

Proposition 12 For f ∈ L2
a(U

�+1
α ) we have

∂f (x0, . . . , x�−1) = (� + 1)

∫

Sx0 ···x�−1

f (t, x0, . . . , x�−1)dμ(t).

Proof The proof is essentially the same as the proof of Proposition 4, using the fact
that K ≡ 1, f is alternating, and the above remark. �

Note that the domain of integration depends on x ∈ U�
α , and this makes the sub-

sequent analysis more difficult than that in Sect. 3. We thus have the corresponding
chain complex

· · · ∂−−−−→ L2
a

(
U�+1

α

) ∂−−−−→ L2
a

(
U�

α

) ∂−−−−→ · · · ∂−−−−→ L2
a

(
U1

α

) ∂−−−−→ 0.

Of course, U1
α = X. The corresponding Hodge Laplacian is the operator

Δ : L2
a(U

�
α) → L2

a(U
�
α), Δ = ∂δ+δ∂ , where all of these operators depend on � and α.

When we want to emphasize this dependence, we will list � and (or) α as subscripts.
We will use the following notation for the cohomology and harmonic functions of the
above complexes:

H�
L2,α

(X) = Ker δ�,α

Im δ�−1,α

and Harm�
α(X) = KerΔ�,α.

Remark 4 If α ≥ diam(X), then U�
α = X�, so the situation is as in Theorem 2 of

Sect. 2, and thus H�
L2,α

(X) = 0 for � > 0 and H 0
L2,α

(X) = R. Also, if X is a finite
union of connected components X1, . . . ,Xk , and α < d(Xi,Xj ) for all i 
= j , then
H�

L2,α
(X) = ⊕k

i=1 H�
L2,α

(Xi).

Definition 1 We say that Hodge theory for X at scale α holds if we have the orthog-
onal direct sum decomposition into closed subspaces

L2
a

(
U�

α

) = Im δ�−1 ⊕ Im δ∗
� ⊕ Harm�

α(X) for all �

and furthermore, H�
α,L2(X) is isomorphic to Harm�

α(X), with each equivalence class
in the former having a unique representative in the latter.
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Remark 5 Hodge theory is functorial in the sense that, for any s ≥ 1, the inclusion
U�

α ⊆ U�
sα induces corestriction maps H�

sα → H�
α . In seeking a robust notion of co-

homology, it will make sense to consider the images of these maps at a sufficiently
large separation s, rather than at individual cohomology groups H�

α .
More generally, let f : X → Y be an L-Lipschitz, measure-class-preserving map.

Then there are induced maps Un
α (X) → Un

Lα(Y ), and therefore homomorphisms f ∗ :
Hn

Lα(Y ) → Hn
α (X) for all n.

Theorem 4 If X is a compact metric space, α > 0, and the L2-cohomology spaces
Ker δ�,α/ Im δ�−1,α , � ≥ 0 are finite dimensional, then Hodge theory for X at scale α

holds.

Proof This is immediate from the Hodge lemma (Lemma 1), using Proposition 5
from Sect. 2. �

We record the formulas for δ∂f and ∂δf for f ∈ L2
a(U

�+1
α ):

δ(∂f )(x0, . . . , x�) = (� + 1)

�∑

i=0

(−1)i
∫

Sx0,...,x̂i ,...,x�

f
(
t, x0, . . . , x̂i , . . . , x�

)
dμ(t)

∂(δf )(x0, . . . , x�) = (� + 2)μ(Sx0,...,x�
)f (x0, . . . , x�)

+ (� + 2)

�∑

i=0

(−1)i+1
∫

Sx0,...,x�

f
(
t, x0, . . . , x̂i , . . . , x�

)
dμ(t).

(9)
Of course, the formula for Δf is found by adding these two.

Remark 6 Harmonic forms are solutions of the optimization problem: Minimize the
“Dirichlet norm” ‖δf ‖2 + ‖∂f ‖2 = 〈Δf,f 〉 = 〈Δ1/2f,Δ1/2f 〉 over f ∈ L2

a(U
�+1
α ).

Remark 7 The alternative neighborhoods V �+1
α giving rise to the Vietoris-Rips com-

plex (see Chazal and Oudot [7]) were defined by (x0, . . . , x�) ∈ U�+1
α if and only if

d(xi, xj ) ≤ α for all i, j . This corresponds to the theory developed in Sect. 2 with
K(x,y) equal to the characteristic function of V 2

α . A version of Theorem 4 holds in
this case. We prefer our (Čech) version to the Vietoris-Rips development, since the
Čech theory is so standard in the topological literature.

5 L2-Theory of α-Harmonic 0-Forms

In this section we assume that we are in the setting of Sect. 4, with � = 0. Thus X is
a compact metric space with a probability measure and with a fixed scale α > 0.

Recall that f ∈ L2(X) is α-harmonic if Δαf = 0. Moreover, if δ : L2(X) →
L2

a(U
2
α) denotes the coboundary, then Δαf = 0 if and only if δf = 0; also

δf (x0, x1) = f (x1) − f (x0) for all pairs (x0, x1) ∈ U2
α .
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Recall that for any x ∈ X, the slice Sx,α = Sx ⊂ X2 is the set

Sx = Sx,α = {
t ∈ X : ∃p ∈ X such that x, t ∈ Bα(p)

}
.

Note that Bα(x) ⊂ Sx,α ⊂ B2α(x). It follows that x1 ∈ Sx0,α if and only if x0 ∈ Sx1,α .
We conclude the following.

Proposition 13 Let f ∈ L2(X). Then Δαf = 0 if and only if f is locally constant in
the sense that f is constant on Sx,α for every x ∈ X. Moreover, if Δαf = 0, then

(a) If X is connected, then f is constant.
(b) If α is greater than the maximum distance between components of X, then f is

constant.
(c) For any x ∈ X, f (x) = average of f on Sx,α and on Bα(x).
(d) Harmonic functions are continuous.

We note that continuity of f follows from the fact that f is constant on each slice
Sx,α , and thus locally constant.

Remark 8 We will show that (d) is also true for harmonic 1-forms with an additional
assumption on μ (Sect. 8), but are unable to prove it for harmonic 2-forms.

Consider next an extension of (d) to the Poisson regularity problem. If Δαf = g

is continuous, is f continuous? In general the answer is no, and we will give an
example.

Since ∂0 on L2(X) is zero, the L2-α-Hodge theory (Sect. 9) takes the form

L2(X) = Im ∂ ⊕ Harmα,

where ∂ : L2(U2
α) → L2(X) and Δf = ∂δf . Thus, for f ∈ L2(X), by (9),

Δαf (x) = 2μ(Sx,α)f (x) − 2
∫

Sx,α

f (t)dμ(t). (10)

The following example shows that an additional assumption is needed for the Pois-
son regularity problem to have an affirmative solution. Let X be the closed interval
[−1,1] with the usual metric d and let μ be the Lebesgue measure on X with an
atom at 0, μ({0}) = 1. Fix any α < 1/4. We will define a piecewise linear function
on X with discontinuities at −2α and 2α as follows. Let a and b be any real numbers
a 
= b, and define

f (x) =

⎧
⎪⎨

⎪⎩

a−b
8α

+ a, −1 ≤ x < −2α,
b−a
4α

(x − 2α) + b, −2α ≤ x ≤ 2α,
a−b
8α

+ b, 2α < x ≤ 1.

Using (10) above one readily checks that Δαf is continuous by computing left-
hand and right-hand limits at ±2α. (The constant values of f outside [−2α,2α] are



20 Found Comput Math (2012) 12:1–48

chosen precisely so that the discontinuities of the two terms on the right side of (10)
cancel out.)

With an additional “regularity” hypothesis imposed on μ, the Poisson regularity
property holds. In the rest of this section assume that μ(Sx ∩ A) is a continuous
function of x ∈ X for each measurable set A. One can show that if μ is Borel regular,
then this will hold, provided μ(Sx ∩A) is continuous for all closed sets A (or all open
sets A).

Proposition 14 Assume that μ(Sx ∩ A) is a continuous function of x ∈ X for each
measurable set A. If Δαf = g is continuous for f ∈ L2(X), then f is continuous.

Proof From (10) we have

f (x) = g(x)

2μ(Sx)
+ 1

μ(Sx)

∫

Sx

f (t)dμ(t).

The first term on the right is clearly continuous by our hypotheses on μ and the fact
that g is continuous. It suffices to show that the function h(x) = ∫

Sx
f (t)dμ(t) is

continuous. If f = χA is the characteristic function of any measurable set A, then
h(x) = μ(Sx ∩ A) is continuous, and therefore h is continuous for f any simple
function (linear combination of characteristic functions of measurable sets). From
general measure theory, if f ∈ L2(X), we can find a sequence of simple functions
fn such that fn(t) → f (t) a.e., and |fn(t)| ≤ |f (t)| for all t ∈ X. Thus hn(x) =∫
Sx

fn(t)dμ(t) is continuous and

∣∣hn(x) − h(x)
∣∣ ≤

∫

Sx

∣∣fn(t) − f (t)
∣∣dμ(t) ≤

∫

X

∣∣fn(t) − f (t)
∣∣dμ(t).

Since |fn − f | → 0 a.e., and |fn − f | ≤ 2|f | with f being in L1(X), it follows from
the dominated convergence theorem that

∫
X

|fn − f |dμ → 0. Thus hn converges
uniformly to h, and so continuity of h follows from continuity of hn. �

We don’t have a similar result for 1-forms.
Partly to relate our framework of α-harmonic theory to some previous work, we

combine the setting of Sect. 2 with Sect. 4. Thus we now put back the function K .
Assume K > 0 is a symmetric and continuous function K : X × X → R, and δ and
∂ are defined as in Sect. 2, but use a similar extension to general α > 0, of Sect. 4, all
in the L2-theory.

Let D : L2(X) → L2(X) be the operator defined as multiplication by the function

D(x) =
∫

X

G(x, y)dμ(y) where G(x,y) = K(x,y)χU2
α

using the characteristic function χU2
α

of U2
α . So χU2

α
(x0, x1) = 1 if (x0, x1) ∈ U2

α and

0 otherwise. Furthermore, let LG : L2(X) → L2(X) be the integral operator defined
by

LGf (x) =
∫

X

G(x, y)f (y)dμ(y).
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Note that LG(1) = D where 1 is the constant function. When X is compact LG is a
Hilbert-Schmidt operator (this was first noted to us by Ding-Xuan Zhou). Thus LG is
trace class and self-adjoint. It is not difficult to see now that (10) takes the form

1

2
Δαf = Df − LGf. (11)

(For the special case α = ∞, i.e. α is irrelevant as in Sect. 2, this is the situation
as in Smale and Zhou [34] for the case where K is a reproducing kernel.) As in the
previous proposition, we have the following.

Proposition 15 The Poisson regularity property holds for the operator of (11).

To get a better understanding of (11), it is useful to define a normalization of the
kernel G and the operator LG as follows. Let Ĝ : X × X → R be defined by

Ĝ(x, y) = G(x,y)

(D(x)D(y))1/2

and L
Ĝ

: L2(X) → L2(X) be the corresponding integral operator. Then L
Ĝ

is trace
class and self-adjoint, and has a complete orthonormal system of continuous eigen-
functions.

A normalized α-Laplacian may be defined on L2(X) by

1

2
Δ̂ = I − L

Ĝ

so that the spectral theory of L
Ĝ

may be transferred to Δ̂. (Also, one might consider
1
2Δ∗ = I − D−1LG as in Belkin, De Vito, and Rosasco [3].)

In Smale and Zhou [34], for α = ∞, error estimates are given (reproducing kernel
case) for the spectral theory of L

Ĝ
in terms of finite-dimensional approximations.

See especially Belkin and Niyogi [2] for limit theorems as α → 0.

6 Harmonic Forms on Constant Curvature Manifolds

In this section we will give an explicit description of harmonic forms in a special
case. Let X be a compact, connected, oriented manifold of dimension n > 0, with a
Riemannian metric g of constant sectional curvature. Also, assume that g is normal-
ized so that μ(X) = 1 where μ is the measure induced by the volume form associated
with g, and let d be the metric on X induced by g. Let α > 0 be sufficiently small so
that, for all p ∈ X, the ball B2α(p) is geodesically convex. That is, for x, y ∈ B2α(p)

there is a unique, length-minimizing geodesic γ from x to y, and γ lies in B2α(p).
Note that if (x0, . . . , xn) ∈ Un+1

α , then d(xi, xj ) ≤ 2α for all i, j , and thus all xi lie
in a common geodesically convex ball. Such a point defines an n-simplex with ver-
tices x0, . . . , xn whose faces are totally geodesic submanifolds, which we will denote
by σ(x0, . . . , xn). We will also denote the k-dimensional faces by σ(xi0, . . . , xik ) for
k < n. Thus σ(xi, xj ) is the geodesic segment from xi to xj , σ(xi, xj , xk) is the
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union of geodesic segments from xi to points on σ(xj , xk), and higher dimensional
simplices are defined inductively. (Since X has constant curvature, this construction
is symmetric in x0, . . . , xn.) A k-dimensional face will be called degenerate if one of
its vertices is contained in one of its (k − 1)-dimensional faces.

Note that the cohomology of the Vietoris-Rips complex has already been consid-
ered by Hausmann [21], but his construction is quite different from ours. He considers
the limit, as ε → 0, of the simplicial cohomology of Xε . First, we contend that im-
portant information is visible in Xα at particular scales α, possibly determined by
the problem at hand, and not tending to 0. Second, Hausmann considers simplicial
homology, with arbitrary coefficients, while we consider �2 cohomology, with real or
complex coefficients.

For (x0, . . . , xn) ∈ Un+1
α , the orientation on X induces an orientation on σ(x0, . . . ,

xn) (assuming it is non-degenerate). For example, if v1, . . . , vn denote the tangent
vectors at x0 to the geodesics from x0 to x1, . . . , xn, we can define σ(x0, . . . , xn) to
be positive (negative) if {v1, . . . , vn} is a positive (respectively negative) basis for the
tangent space at x0. Of course, if τ is a permutation, the orientation of σ(x0, . . . , n)

is equal to (−1)sign τ times the orientation of σ(xτ(0), . . . , xτ(n)). We now define
f : U�+1

α → R by

f (x0, . . . , xn) = μ
(
σ(x0, . . . , xn)

)
for σ(x0, . . . , xn) positive

= −μ
(
σ(x0, . . . , xn)

)
for σ(x0, . . . , xn) negative

= 0 for σ(x0, . . . , xn) degenerate.

Thus f is the signed volume of oriented geodesic n-simplices. Clearly, f is con-
tinuous, as non-degeneracy is an open condition and the volume of a simplex varies
continuously in the vertices.

Recall that, in classical Hodge theory, every de Rham cohomology class has a
unique harmonic representative. In particular, the volume form is harmonic, and gen-
erates top-dimensional cohomology. In our more elaborate context, we can also pin-
point the “form” generating top-dimensional cohomology. (See Remark 9 below on
relaxing the constant curvature hypothesis.) The main result of this section is the
following theorem.

Theorem 5 Let X be an oriented Riemannian n-manifold of constant sectional cur-
vature and f , α as above. Then f is harmonic. In fact, f is the unique harmonic
n-form in L2

a(U
n+1
α ) up to scaling.

Proof Uniqueness follows from Sect. 9. We will show that ∂f = 0 and δf = 0. Let
(x0, . . . , xn−1) ∈ Un

α . To show ∂f = 0, it suffices to show, by Proposition 12, that

∫

Sx0 ···xn−1

f (t, x0, . . . , xn−1)dμ(t) = 0. (12)

We may assume that σ(x0, . . . , xn−1) is non-degenerate; otherwise the integrand is
identically zero. Recall that Sx0···xn−1 = {t ∈ X : (t, x0, . . . , xn−1) ∈ Un+1

α } ⊂ B2α(x0)
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where B2α(x0) is the geodesic ball of radius 2α centered at x0. Let Γ be the intersec-
tion of the totally geodesic n − 1 dimensional submanifold containing x0, . . . , xn−1

with B2α(x0). Thus Γ divides B2α(x0) into two pieces B+ and B−. For t ∈ Γ , the
simplex σ(t, x0, . . . , xn−1) is degenerate; therefore, the orientation is constant on
each of B+ and B−, and we can assume that the orientation of σ(t, x0, . . . , xn−1)

is positive on B+ and negative on B−. For x ∈ B2α(x0) define φ(x) to be the re-
flection of x across Γ . Thus the geodesic segment from x to φ(x) intersects Γ per-
pendicularly at its midpoint. Because X has constant curvature, φ is a local isometry
and since x0 ∈ Γ , d(x, x0) = d(φ(x), x0). Therefore, φ : B2α(x0) → B2α(x0) is an
isometry which maps B+ isometrically onto B− and B− onto B+. Denote Sx0···xn−1

by S. It is easy to see that φ : S → S, and so defining S± = S ∩ B± it follows that
φ : S+ → S− and φ : S− → S+ are isometries. Now

∫

Sx0 ···xn−1

f (t, x0, . . . , xn−1)dμ(t)

=
∫

S+
f (t, x0, . . . , xn−1)dμ(t) +

∫

S−
f (t, x0, . . . , xn−1)dμ(t)

=
∫

S+
μ
(
σ(t, x0, . . . , xn−1)

)
dμ(t) −

∫

S−
μ
(
σ(t, x0, . . . , xn−1)

)
dμ(t).

Since μ(σ(t, x0, . . . , xn−1)) = μ(σ(φ(t)t, x0, . . . , xn−1)) for t ∈ S+, the last two
terms on the right side cancel, establishing (12).

We now show that δf = 0. Let (t, x0, . . . , xn) ∈ Un+2
α . Thus

δf (t, x0, . . . , xn) = f (x0, . . . , xn) +
n∑

i=0

(−1)i+1f
(
t, x0, . . . , x̂i , . . . , xn

)

and we must show that

f (x0, . . . , xn) =
n∑

i=0

(−1)if
(
t, x0, . . . , x̂i , . . . , xn

)
. (13)

Without loss of generality, we will assume that σ(x0, . . . , xn) is positive. The demon-
stration of (13) depends on the location of t . Suppose that t is in the interior of
the simplex σ(x0, . . . , xn). Then, for each i, the orientation of σ(x0, . . . , xi−1, t,

xi+1, . . . , xn) is the same as the orientation of σ(x0, . . . , xn), since t and xi lie on
the same side of the face σ(x0, . . . , x̂i , . . . , xn), and is thus positive. On the other
hand, the orientation of σ(t, x0, . . . , x̂i , . . . , xn) is (−1)i times the orientation of
σ(x0, . . . , xi−1, t, xi+1, . . . , xn). Therefore, the right side of (13) becomes

n∑

i=0

μ
(
σ(x0, . . . , xi−1, t, xi+1, . . . , xn)

)
.
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However, this equals μ(σ(x0, . . . , xn)), which is the left side of (13), since

σ(x0, . . . , xn) =
n⋃

i=0

σ(x0, . . . , xi−1, t, xi+1, . . . , xn)

when t is interior to σ(x0, . . . , xn).
There are several cases when t is exterior to σ(x0, . . . , xn) (or on one of the faces),

depending on which side of the various faces it lies. We just give the details for
one of these, the others being similar. Simplifying notation, let Fi denote the face
“opposite” xi , σ(x0, . . . , x̂i , . . . , xn), and suppose that t is on the opposite side of F0
from x0, but on the same side of Fi as xi for i 
= 0. As in the above argument, the
orientation of σ(x0, . . . , xi−1, t, xi+1, . . . , xn) is positive for i 
= 0 and is negative for
i = 0. Therefore, the right side of (13) is equal to

n∑

i=1

μ
(
σ(x0, . . . , xi−1, t, xi+1, . . . , xn)

) − μ
(
σ(t, x1, . . . , xn)

)
. (14)

Let s be the point where the geodesic from x0 to t intersects F0. Then, for each
i > 0,

σ(x0, . . . , xi−1, t, xi+1, . . . , xn)

= σ(x0, . . . , xi−1, s, xi+1, . . . , xn) ∪ σ(s, . . . , xi−1, t, xi+1, . . . , xn).

Taking μ of both sides and summing over i gives

n∑

i=1

μ
(
σ(x0, . . . , xi−1, t, xi+1, . . . , xn)

)

=
n∑

i=1

μ
(
σ(x0, . . . , xi−1, s, xi+1, . . . , xn)

)

+
n∑

i=1

μ
(
σ(s, . . . , xi−1, t, xi+1, . . . , xn)

)
.

However, the first term on the right is just μ(σ(x0, . . . , xn)) and the second term
is μ(σ(t, x1, . . . , xn)). Combining this with (14) gives us (13), finishing the proof of
δf = 0. �

Remark 9 The proof that ∂f = 0 strongly used the fact that X has constant curvature.
In the case where X is an oriented Riemannian surface of variable curvature, totally
geodesic n simplices do not generally exist, although geodesic triangles σ(x0, x1, x2)

are well defined for (x0, x1, x2) ∈ U3
α . In this case, the proof above shows that δf = 0.

More generally, for an n-dimensional connected oriented Riemannian manifold, us-
ing the order of a tuple (x0, . . . , xn) one can iteratively form convex combinations and
in this way assign an oriented n-simplex to (x0, . . . , xn) and then define the volume
cocycle as above (if α is small enough).
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Using a chain map to simplicial cohomology which evaluates at the vertices’
points, it is easy to check that these cocycles represent a generator of the cohomology
in degree n (which by the results of Sect. 9 is exactly one dimensional).

7 Cohomology

Traditional cohomology theories on general spaces are typically defined in terms of
limits as in Čech theory, with nerves of coverings. However, an algorithmic approach
suggests a development via a scaled theory, at a given scale α > 0. Then, as α → 0
one recovers the classical setting. A closely related point of view is that of persis-
tent homology; see Edelsbrunner, Letscher, and Zomorodian [17], Zomorodian and
Carlsson [40], and Carlsson [5].

We give a setting for such a scaled theory, with a fixed scaling parameter α > 0.
Let X be a separable, complete metric space with metric d , and α > 0 a “scale.”

We will define a (generally infinite) simplicial complex CX,α associated to (X,d,α).
Toward that end let X�+1, for � ≥ 0, be the (�+1)-fold Cartesian product, with metric
still denoted by d , d : X�+1 × X�+1 → R where d(x, y) = maxi=0,...,� d(xi, yi). As
in Sect. 4, let

U�+1
α (X) = U�+1

α = {
x ∈ X�+1 : d(x,D�+1) ≤ α

}
,

where D�+1 ⊂ X�+1 is the diagonal, so D�+1 = {(t, . . . , t) � + 1 times}. Then let
C�

X,α = U�+1
α . This has the structure of a simplicial complex whose �-simplices

consist of points of U�+1
α . This is well defined since if x ∈ U�+1

α , then y =
(x0, . . . , x̂i , . . . , x�) ∈ U�

α , for each i = 0, . . . , �. We will write α = ∞ to mean that
U�

α = X�. Following e.g. Munkres [30], there is a well-defined cohomology theory,
simplicial cohomology, for this simplicial complex, with cohomology vector spaces
(always over R) denoted by H�

α(X). We especially note that CX,α is not necessarily a
finite simplicial complex. For example, if X is an open non-empty subset of Euclidean
space, the vertices of CX,α are the points of X and of course infinite in number. The
complex CX,α will be called the simplicial complex at scale α associated to X.

Example 1 X is finite. Fix α > 0. In this case, for each �, the set of �-simplices is
finite, the �-chains form a finite-dimensional vector space, and the α-cohomology
groups (i.e. vector spaces) H�

α(X) are all finite dimensional. One can check that for
α = ∞ one has dimH 0

α (X) = 1 and Hi
α(X) are trivial for all i > 0. Moreover, for α

sufficiently small (α < min{d(x, y) : x, y ∈ X, x 
= y}) dimH 0
α (X) =cardinality of

X, with Hi
α(X) = 0 for all i > 0. For intermediate α, the α-cohomology can be rich

in higher dimensions, but CX,α is a finite simplicial complex.

Example 2 First let A ⊂ R
2 be the annulus A = {x ∈ R

2 : 1 ≤ ‖x‖ ≤ 2}. Form A∗
by deleting the finite set of points with rational coordinates (p/q, r/s), with |q|,
|s| ≤ 1010. Then one may check that for α > 4, H�

α(A∗) has the cohomology of a
point, for certain intermediate values of α, H�

α(A∗) = H�
α(A), and for α small enough

H�
α(A∗) has enormous dimension. Thus the scale is crucial to see the features of A∗

clearly.
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Returning to the case of general X, note that if 0 < β < α one has a natural in-
clusion J : U�

β → U�
α , J : CX,β → CX,α and the restriction J ∗ : L2

a(U
�
α) → L2

a(U
�
β)

commuting with δ (a chain map).
Now assume X is compact. For fixed scale α, consider the covering {Bα(x) : x ∈

X}, where Bα(x) is the ball Bα(x) = {y ∈ X : d(x, y) < α}, and the nerve of the
covering is CX,α , giving the “Čech construction at scale α.” Thus from Čech coho-
mology theory, we see that the limit as α → 0 of H�

α(X) = H�(X) = H�

Čech
(X) is the

�th Čech cohomology group of X.
The next observation is to note that our construction of the scaled simplicial com-

plex CX,α of X follows the same path as Alexander–Spanier theory (see Spanier
[36]). Thus the scaled cohomology groups H�

α(X) will have the direct limit as α → 0
which maps to the Alexander–Spanier group H�

Alex-Sp(X) (and in many cases will

be isomorphic). Thus H�(X) = H�
Alex-Sp(X) = H�

Čech
(X). In fact, in much of the

literature this is recognized by the use of the term Alexander–Spanier–Čech coho-
mology. What we have done is describe a finite scale version of the classical coho-
mology.

Now that we have defined the scale α cohomology groups, H�
α(X) for a metric

space X, our Hodge theory suggests this modification. From Theorem 4, we have
considered instead of arbitrary cochains (i.e. arbitrary functions on U�+1

α which give
the definition here of H�

α(X)), cochains defined by L2-functions on U�+1
α . Thus

we have constructed cohomology groups at scale α from L2-functions on U�+1
α ,

H�
α,L2(X), when α > 0, and X is a metric space equipped with Borel probability

measure.

Question 1 (Cohomology Identification Problem (CIP)) To what extent are H�
L2,α

(X)

and H�
α(X) isomorphic?

This is important via Theorem 4, which asserts that H�
α,L2(X) → Harm�

α(X) is an

isomorphism, in the case where H�
α,L2(X) is finite dimensional.

One may replace L2-functions in the construction of the α-scale cohomology
theory by continuous functions. As in the L2-theory, this gives rise to cohomology
groups H�

α,cont(X). Analogous to CIP we have the simpler question: To what extent
is the natural map H�

α,cont(X) → H�
α(X) an isomorphism?

We will give answers to these questions for special X in Sect. 9.
Note that in the case where X is finite, or α = ∞, we have an affirmative answer

to this question, as well as to CIP (see Sects. 2 and 3).

Proposition 16 There is a natural injective linear map

Harm�
cont,α(X) → H�

cont,α(X).

Proof The inclusion, which is injective

J : Imcont,α δ ⊕ Harm�
cont,α(X) → Kercont,α



Found Comput Math (2012) 12:1–48 27

induces an injection

J ∗ : Harm�
cont,α(X) = Imcont,α δ ⊕ Harm�

cont,α(X)

Imcont,α δ
→ Kercont,α

Imcont,α
= H�

cont,α(X)

and the proposition follows. �

8 Continuous Hodge Theory on the Neighborhood of the Diagonal

As in the last section, (X,d) will denote a compact metric space equipped with a
Borel probability measure μ. For topological reasons (see Sect. 6) it would be nice to
have a Hodge decomposition for continuous functions on U�+1

α , analogous to the con-
tinuous theory on the whole space (Sect. 4). We will use the following notation. C�+1

α

will denote the continuous alternating real-valued functions on U�+1
α , Kerα,cont Δ�

will denote the functions in C�+1
α that are harmonic, and Kerα,cont δ� will denote those

elements of C�+1
α that are closed. Also, H�

α,cont(X) will denote the quotient space (co-
homology space) Kerα,cont δ�/δ(C

�
α). We raise the following question, analogous to

Theorem 4.

Question 2 (Continuous Hodge Decomposition) Under what conditions on X and
α > 0 is it true that there is the following orthogonal (with respect to the L2-inner
product) direct sum decomposition

C�+1
α = δ

(
C�

α

) ⊕ ∂
(
C�+2

α

) ⊕ Kerα,cont Δ�,

where Kercont,α Δ� is isomorphic to H�
α,cont(X), with every element in H�

α,cont(X)

having a unique representative in Kerα,cont Δ�?

There is a related analytical problem that is analogous to elliptic regularity for par-
tial differential equations; in fact, elliptic regularity features prominently in classical
Hodge theory.

Question 3 (The Poisson Regularity Problem) For α > 0 and � > 0, suppose that
Δf = g where g ∈ C�+1

α and f ∈ L2
a(U

�+1
α ). Under what conditions on (X,d,μ) is

f continuous?

Theorem 6 An affirmative answer to the Poisson Regularity Problem, together with
closed image δ(L2

a(U
�
α)), implies an affirmative solution to the continuous Hodge

decomposition question.

Proof Assume that the Poisson regularity property holds, and let f ∈ C�+1
α . From

Theorem 4 we have the L2-Hodge decomposition

f = δf1 + ∂f2 + f3,

where f1 ∈ L2
a(U

�
α), f2 ∈ L2

a(U
�+2
α ), and f3 ∈ L2

a(U
�+1
α ) with Δf3 = 0. It suffices to

show that f1 and f2 can be taken to be continuous, and f3 is continuous. Since Δf3 =
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0 is continuous, f3 is continuous by Poisson regularity. We will show that ∂f2 =
∂(δh2) where δh2 is continuous (and thus f2 can be taken to be continuous). Recall
(corollary of the Hodge Lemma in Sect. 2) that the following maps are isomorphisms:

δ : ∂
(
L2

a

(
U�+2

α

)) → δ
(
L2

a

(
U�+1

α

))
and ∂ : δ

(
L2

a

(
U�

α

)) → ∂
(
L2

a

(
U�+1

α

))

for all � ≥ 0. Thus

∂f2 = ∂(δh2) for some h2 ∈ L2
a

(
U�+1

α

)
.

Now,

Δ
(
δ(h2)

) = δ
(
∂(δ(h2))

) + ∂
(
δ
(
δ(h2)

)) = δ
(
∂
(
δ(h2)

)) = δ
(
∂(f2)

)
(15)

since δ2 = 0. However, from the decomposition for f we have, since δf3 = 0,

δf = δ(∂f2)

and since f is continuous δf is continuous, and therefore δ(∂f2) is continuous. It then
follows from Poisson regularity and (15) that δh2 is continuous, as will be shown.
A dual argument shows that δf1 = δ(∂h1) where ∂h1 is continuous, completing the
proof. �

Notice that a somewhat weaker result than Poisson regularity would imply that f3
above is continuous, namely regularity of harmonic functions.

Question 4 (Harmonic Regularity Problem) For α > 0 and � > 0, suppose that
Δf = 0 where f ∈ L2

a(U
�+1
α ). What conditions on (X,d,μ) would imply f is con-

tinuous?

Under some additional conditions on the measure, we have answered this for � = 0
(see Sect. 5) and can do so for � = 1, which we now consider.

We assume in addition that the inclusion of continuous functions into L2-functions
induces an epimorphism of the associated Alexander–Spanier–Čech cohomology
groups, i.e. that every cohomology class in the L2-theory has a continuous repre-
sentative. In Sect. 9 we will see that this is often the case.

Let now f ∈ L2
a(U

2
α) be harmonic. Let g be a continuous function in the same

cohomology class. Then there is x ∈ L2
a(U

1
α) such that f = g + dx. As δ∗f = 0 it

follows that δ∗dx = −δ∗g is continuous. If the Poisson regularity property in degree
zero holds (compare Proposition 14 of Sect. 5), then x is continuous and therefore
f = g + dx is also continuous.

Thus we have the following proposition.

Proposition 17 Assume that μ(Sx ∩ A) are continuous for x ∈ X and all A measur-
able. Assume that every cohomology class of degree 1 has a continuous representa-
tive. If f is an α-harmonic 1-form in L2

a(U
2
α), then f is continuous.

As in Sect. 5, if μ is Borel regular, it suffices that the hypotheses hold for all A

closed (or all A open).
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9 Finite-Dimensional Cohomology

In this section, we will establish conditions on X and α > 0 that imply that the α

cohomology is finite dimensional. In particular, in the case of the L2-α cohomology,
they imply that the image of δ is closed, and that Hodge theory for X at scale α holds.
Along the way, we will compute the α-cohomology in terms of ordinary Čech coho-
mology of a covering and that the different variants of our Alexander-Spanier-Čech
cohomology at fixed scale (L2, continuous, . . . ) are all isomorphic. We then show
that the important class of metric spaces, Riemannian manifolds satisfy these condi-
tions for α small. In particular, in this case the α-cohomology will be isomorphic to
ordinary cohomology with R-coefficients.

Note that in [31, Sect. 4], a Rips version of the L2-Alexander–Spanier complex on
a finite scale is introduced which is similar to ours. It is then sketched how, for suf-
ficiently small scales on a manifold or a simplicial complex, its cohomology should
be computable in terms of the L2-simplicial or L2-de Rham cohomology, without
giving detailed arguments. These results are rather similar to our results. The fact that
we work with the α-neighborhood of the diagonal causes some additional difficulties
we have to overcome.

Throughout this section, (X,d) will denote a compact metric space, μ a Borel
probability measure on X such that μ(U) > 0 for all non-empty open sets U ⊂ X,
and α > 0. As before U�

α will denote the closed α-neighborhood of the diagonal
in X�. We will denote by Fa(U

�
α) the space of all alternating real-valued functions

on U�
α , by Ca(U

�
α) the continuous alternating real-valued functions on U�

α , and by
L

p
a (U�

α) the Lp alternating real-valued functions on U�
α for p ≥ 1 (in particular, the

case p = 2 was discussed in the preceding sections). If X is a smooth Riemannian
manifold, C∞

a (U�
α) will be the smooth alternating real-valued functions on U�

α . We
will be interested in the following cochain complexes:

0 −−−−→ L
p
a (X)

δ0−−−−→ L
p
a

(
U2

α

) δ1−−−−→ · · · δ�−1−−−−→ L
p
a

(
U�+1

α

) δ�−−−−→ · · ·

0 −−−−→ Ca(X)
δ0−−−−→ Ca

(
U2

α

) δ1−−−−→ · · · δ�−1−−−−→ Ca

(
U�+1

α

) δ�−−−−→ · · ·

0 −−−−→ Fa(X)
δ0−−−−→ Fa

(
U2

α

) δ1−−−−→ · · · δ�−1−−−−→ Fa

(
U�+1

α

) δ�−−−−→ · · ·
And if X is a smooth Riemannian manifold,

0 −−−−→ C∞
a (X)

δ0−−−−→ C∞
a

(
U2

α

) δ1−−−−→ · · · δ�−1−−−−→ C∞
a

(
U�+1

α

) δ�−−−−→ · · ·
The corresponding cohomology spaces Ker δ�/ Im δ�−1 will be denoted by

H�
α,Lp (X), or briefly H�

α,Lp , H�
α,cont, H�

α , and H�
α,smooth respectively. The proof of

finite dimensionality of these spaces, under certain conditions, involves the use of
bicomplexes, some facts about which we collect here.

A bicomplex C∗,∗ will be a rectangular array of vector spaces Cj,k , j, k ≥ 0,
and linear maps (coboundary operators) cj,k : Cj,k → Cj+1,k and dj,k : Cj,k →
Cj,k+1 such that the rows and columns are chain complexes, that is cj+1,kcj,k = 0,
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dj,k+1dj,k = 0, and cj,k+1dj,k = dj+1,kcj,k . Given such a bicomplex, we associate
the total complex E∗, a chain complex

0 −−−−→ E0 D0−−−−→ E1 D1−−−−→ · · · D�−1−−−−→ E� D�−−−−→ · · ·
where E� = ⊕

j+k=� Cj,k and where on each term Cj,k in E�, D� = cj,k +
(−1)kdj,k . Using commutativity of c and d , one can easily check that D�+1D� = 0,
and thus the total complex is a chain complex. We recall a couple of definitions from
homological algebra. If E∗ and F ∗ are cochain complexes of vector spaces with
coboundary operators e and f respectively, then a chain map g : E∗ → F ∗ is a col-
lection of linear maps gj : Ej → Fj that commute with e and f . A chain map in-
duces a map on cohomology. A cochain complex E∗ is said to be exact at the kth term
if the kernel of ek : Ek → Ek+1 is equal to the image of ek−1 : Ek−1 →k . Thus the
cohomology at that term is zero. E∗ is defined to be exact if it is exact at each term.
A chain contraction h : E∗ → E∗ is a family of linear maps hj : Ej → Ej−1 such
that ej−1hj + hj+1ej = Id. The existence of a chain contraction on E∗ implies that
E∗ is exact. The following fact from homological algebra is fundamental in proving
the finite dimensionality of our cohomology spaces.

Lemma 4 Suppose that C∗,∗ is a bicomplex as above, and E∗ is the associated total
complex. Suppose that we augment the bicomplex with a column on the left which is
a chain complex C−1,∗,

C−1,0 d−1,0−−−−→ C−1,1 d−1,1−−−−→ · · · d−1,�−1−−−−→ C−1,�
d−1,�−−−−→ · · ·

and with linear maps c−1,k : C−1,k → C0,k , such that the augmented rows

0 −−−−→ C−1,k
c−1,k−−−−→ C0,k

c0,k−−−−→ · · · c�−1,k−−−−→ C�,k
c�,k−−−−→ · · ·

are chain complexes with d0,kc−1,k = c−1,k+1d−1,k . Then, the maps c−1,k induce a
chain map c−1,∗ : C−1,∗ → E∗. Furthermore, if the first K rows of the augmented
complex are exact, then c−1,∗ induces an isomorphism on the homology of the com-
plexes c∗−1,∗ : Hk(C−1,∗) → Hk(E∗) for k ≤ K and an injection for k = K + 1. In

fact, one only needs exactness of the first K rows up to the K th term CK,j .

A simple proof of this is given in Bott and Tu [4, pp. 95–97], for the Čech-de
Rham complex, but the proof generalizes to the abstract setting. Of course, if we
augmented the bicomplex with a row C∗,−1 with the same properties, the conclusions
would hold. In fact, we will show that the cohomologies of two chain complexes are
isomorphic by augmenting a bicomplex as above with one such row and one such
column.

Corollary 3 Suppose that C∗,∗ is a bicomplex as in Lemma 4, and that C∗,∗ is aug-
mented with a column C−1,∗ as in the lemma, and with a row C∗,−1 that is also a
chain complex with coboundary operators cj,−1 : Cj,−1 → Cj+1,−1 and linear maps
dj,−1 : Cj,−1 → Cj,0 such that the augmented columns

0 −−−−→ Cj,−1 dj,−1−−−−→ C0,k
dj,−1−−−−→ · · · dj,�−1−−−−→ Cj,�

dj,�−−−−→ · · ·
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are chain complexes, and cj,0dj,−1 = dj+1,−1cj,−1. Then, if the first K rows are
exact and the first K + 1 columns are exact, up to the K + 1 term, it follows that
the cohomology H�(C−1,∗) of C−1,∗ and H�(C∗,−1) of C∗,−1 are isomorphic for
0 ≤ K , and HK+1(C−1,∗) is isomorphic to a subspace of HK+1(C∗,−1).

Proof This follows immediately from the lemma, as the cohomology up to order
K of both C−1,∗ and C∗,−1 is isomorphic to the cohomology of the total complex.
Also, HK+1(C−1,∗) is isomorphic to a subspace of HK+1(E∗) which is isomorphic
to HK+1(C∗,−1). �

Remark 10 If all of the spaces Cj,k in Lemma 4 and Corollary 3 are Banach spaces,
and the coboundaries cj,k and dj,k are bounded, then the isomorphisms of coho-
mology can be shown to be topological isomorphisms, where the topologies on the
cohomology spaces are induced by the quotient semi-norms.

Let {Vi, i ∈ S} be a finite covering of X by Borel sets (usually taken to be balls).
We construct the corresponding Čech-Lp-Alexander bicomplex at scale α as follows:

Ck,� =
⊕

I∈Sk+1

L
p
a

(
U�+1

α ∩ V �+1
I

)
for k, � ≥ 0

where we use the abbreviation VI = Vi0,...,ik = ⋂k
j=0 Vij . The vertical coboundary

dk,� is just the usual coboundary δ� as in Sect. 4, acting on each L
p
a (U�+1

α ∩ VI�+1).
The horizontal coboundary ck,� is the “Čech differential.” More explicitly, if f ∈
Ck,�, then it has components fI which are functions on U�+1

α ∩V �+1
I for each (k+1)-

tuple I , and for any k + 2 tuple J = (j0, . . . , jk+1), cf is defined on U�+1
α ∩ V �+1

J

by

(ck,�f )J =
k+1∑

i=0

(−1)if
j0,...,ĵi ,...,jk+1

restricted to V �+1
J .

It is not hard to check that the coboundaries commute, cδ = δc. We augment the
complex on the left with the column (chain complex) C−1,� = L

p
a (U�+1

α ) with the
horizontal map c−1,� equal to restriction on each Vi and the vertical map the usual
coboundary. We augment the complex on the bottom with the chain complex C∗,−1,
which is the Čech complex of the cover {Vi}. That is, an element f ∈ Ck,−1 is a
function that assigns to each VI a real number or equivalently Ck,−1 = ⊕

I∈Sk+1 RVI .
The vertical maps are just inclusions into C∗,0, and the horizontal maps are the Čech
differential as defined above.

Remark 11 We can similarly define the Čech–Alexander bicomplex, the Čech-
continuous Alexander bicomplex, and the Čech-smooth Alexander bicomplex (when
X is a smooth Riemannian manifold) by replacing L

p
a everywhere in the above com-

plex with Fa , Ca , and C∞
a respectively.

Remark 12 The cohomology spaces of C∗,−1 are finite dimensional since the cover
{Vi} is finite. This is called the Čech cohomology of the cover, and it is the same as
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the simplicial cohomology of the simplicial complex that is the nerve of the cover
{Vi}.

We will use the above complex to show, under some conditions, that H�
α,Lp , H�

α ,

and H�
α,cont are isomorphic to the Čech cohomology of an appropriate finite open

cover of X and thus finite dimensional.

Theorem 7 Let {Vi}i∈S be a finite cover of X by Borel sets as above, and assume
that {V K+1

i }i∈S is a cover for UK+1
α for some K ≥ 0. Assume also that the first

K + 1 columns of the corresponding Čech-Lp-Alexander complex are exact up to the
K + 1 term. Then H�

α,Lp is isomorphic to H�(C∗,−1) for � ≤ K and is thus finite

dimensional. Also, HK+1
α,Lp is isomorphic to a subspace of HK+1(C∗,−1). If {Vi}i∈S is

an open cover, then the same conclusion holds for H�
α , H�

α,cont, and H�
α,smooth (when

X is a smooth Riemannian manifold), and hence all are isomorphic to each other.
Those isomorphisms are induced by the natural inclusion maps of smooth functions
into continuous functions into Lq -functions into Lp-functions (q ≥ p) into arbitrary
real-valued functions.

Proof In light of Corollary 3, it suffices to show that the first K rows of the bi-
complex are exact. Indeed, we are computing the sheaf cohomology of Uk+1

α for a
flabby sheaf (the sheaf of smooth or continuous or Lp or arbitrary functions) which
vanishes. We write out the details: Note that for � ≤ K , {V �+1

i } covers U�+1
α and

therefore c−1,� : L
p
a (U�+1

α ) → ⊕
i∈S L

p
a (U�+1

α ∩ V �+1
i ) is injective (as c−1,� is a re-

striction); therefore, we have exactness at the first term. In general, we construct a
chain contraction h on the �th row. Let {φi} be a measurable partition of unity for
U�+1

α subordinate to the cover {U�+1
α ∩ V �+1

i } (and thus supportφi ⊂ U�+1
α ∩ V �+1

i

and
∑

i φi(x) = 1 for all x). Then define

h :
⊕

I∈Sk+1

L
p
a

(
U�+1

α ∩ V �+1
I

) →
⊕

I∈Sk

L
p
a

(
U�+1

α ∩ V �+1
I

)

for each k by (hf )i0,...,ik−1 = ∑
j∈S φjfj,i0,...,ik−1 . We show that h is a chain contrac-

tion, that is ch + hc = Id:

(
c(hf )

)
i0,...,ik−1 =

k−1∑

n=0

(−1)n(hf )
i0,...,în,...,ik−1

=
∑

j,n

(−1)nφjfj,i0,...,în,...,ik−1
.

Now,
(
h(cf )

)
i0,...,ik−1 =

∑

j∈S

φj (cf )j,i0,...,ik−1

=
∑

j

φj

(

fi0,...,ik−1 −
k−1∑

n

(−1)nf
j,i0,...,în,...,ik−1

)

= fi0,...,ik−1 − (
c(hf )

)
i0,...,ik−1

.
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Thus h is a chain contraction for the �th row, proving exactness (note that exact-
ness follows, since if cf = 0 then from above c(hf ) = f ). If {Vi} is an open cover,
then the partition of unity {φi} can be chosen to be continuous, or even smooth in the
case where X is a smooth Riemannian manifold. Then h as defined above is a chain
contraction on the corresponding complexes with L

p
a replaced by Fa , Ca , or C∞

a .
Observe that the inclusions C∞ ↪→ C0 ↪→ Lq ↪→ Lp ↪→ F (where F stands for

arbitrary real-valued functions) extend to inclusions of the augmented bicomplexes,
whose restriction to the Čech column C∗,−1 is the identity. As the identity clearly
induces an isomorphism in cohomology, and the inclusion of this augmented bottom
row into the (non-augmented) bicomplex also does, then by naturality the various
inclusions of the bicomplexes induce isomorphisms in cohomology. The same argu-
ment applied backwards to the inclusions of the Alexander–Spanier–Čech rows into
the bicomplexes shows that the inclusions of the smaller function spaces into the
larger function spaces induce isomorphisms in α-cohomology.

This finishes the proof of the theorem. �

We can use Theorem 7 to prove finite dimensionality of the cohomologies in gen-
eral, for � = 0 and 1.

Theorem 8 For any compact X and any α > 0, H�
α,Lp , H�

α , H�
α,cont, and H�

α,smooth
(X a smooth manifold) are finite dimensional and are isomorphic, for � = 0,1.

Let {Vi} be a covering of X by open balls of radius α/3. Then the first row (� = 0)
of the Čech-Lp-Alexander complex is exact from the proof of Theorem 7 (taking
K = 0). It suffices to show that the columns are exact. Note that V �+1

I ⊂ U�+1
α triv-

ially for each � and I ∈ Sk+1 because diam(VI ) < α. For k fixed, and I ∈ Sk+1 we
define g : L

p
a (V �+1

I ) → L
p
a (V �

I ) by

gf (x0, . . . , x�−1) = 1

μ(VI )

∫

VI

f (t, x0, . . . , x�−1)dμ(t).

We check that g defines a chain contraction:

δ(gf )(x0, . . . , x�) =
∑

i

(−1)i(gf )
(
x0, . . . , x̂i , . . . , x�

)

=
∑

i

(−1)i
1

μ(VI )

∫

VI

f
(
t, x0, . . . , x̂i , . . . , x�

)
dμ(t).

But,

g(δf )(x0, . . . , x�)

= 1

μ(VI )

∫

VI

δf (t, x0, . . . , x�)dμ(t)

= 1

μ(VI )

(∫

VI

f

(
(x0, . . . , x�)dμ(t) −

∑

i

(−1)i
∫

VI

f
(
t, . . . , x̂i , . . . , x�

)
dμ)t

))

= f (x0, . . . , x�) − δ(gf )(x0, . . . , x�).
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Thus g defines a chain contraction on the kth column, and the columns are exact.
For the corresponding Alexander, continuous and smooth, bicomplexes, a chain con-
traction can be defined by fixing for each VI , I ∈ Sk+1 a point p ∈ VI and setting
gf (x0, . . . , x�−1) = f (p,x0, . . . , x�−1). This is easily verified to be a chain contrac-
tion, finishing the proof of the theorem.

Recall that for x = (x0, . . . , x�−1) ∈ U�
α we define the slice Sx = {t ∈ X :

(t, x0, . . . , x�−1) ∈ U�+1
α }. We consider the following hypothesis on X, α > 0, and

non-negative integer K :

Hypothesis (∗) There exists a δ > 0 such that, whenever V = ⋂
i Vi is a non-empty

intersection of finitely many open balls of radius α + δ, then there is a Borel set W of
positive measure such that, for each � ≤ K + 1,

W ⊂ V ∩
( ⋂

x∈U�
α∩V �

Sx

)
.

Theorem 9 Assume that X, α > 0, and K satisfy Hypothesis (∗). Then, for � ≤ K ,
H�

α,Lp , H�
α , H�

α,cont, and H�
α,smooth (when X is a smooth Riemannian manifold) are

all finite dimensional, and are isomorphic to the Čech cohomology of some finite
covering of X by open balls of radius α + δ. Furthermore, the Hodge theorem for X

at scale α holds (Theorem 4 of Sect. 4).

Proof Let {Vi}, i ∈ S be a finite open cover of X by balls of radius α + δ such that
{V K+1

i } is a covering for UK+1
α . This can always be done since UK+1

α is compact.
We first consider the case of the Čech-Lp-Alexander bicomplex corresponding to
the cover. By Theorem 7, it suffices to show that there is a chain contraction of the
columns up to the K th term. For each I ∈ Sk+1 and � ≤ K + 1, let W be the Borel
set of positive measure assumed to exist in (∗) with VI playing the role of V in (∗).
Then we define g : L

p
a (U�+1

α ∩ V �+1
I ) → L

p
a (U�

α ∩ V �
I ) by

gf (x0, . . . , x�−1) = 1

μ(W)

∫

W

f (t, x0, . . . , x�−1)dμ(t).

The Hypothesis (∗) implies that g is well defined. The proof that g defines a chain
contraction on the kth column (up to the K th term) is identical to the one in the
proof of Theorem 8. As in the proof of Theorem 8, the chain contraction for the
case when L

p
a is replaced by Fa , Ca , and C∞

a can be taken to be gf (x0, . . . , x�−1) =
f (p,x0, . . . , x�−1) for some fixed p ∈ W . Note that, in these cases, we don’t require
that μ(W) > 0, only that W 
= ∅. �

Remark 13 If X satisfies certain local conditions as in Wilder [38], then the Čech
cohomology of the cover, for small α, is isomorphic to the Čech cohomology of X.

Our next goal is to give somewhat readily verifiable conditions on X and α that
will imply (∗). This involves the notion of the midpoint and radius of a closed set
in X.
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Let Λ ⊂ X be closed. We define the radius r(Λ) by r(Λ) = inf{β : ⋂x∈Λ Bβ(x) 
=
∅} where Bβ(x) denotes the closed ball of radius β centered at x.

Proposition 18
⋂

x∈Λ Br(Λ)(x) 
= ∅. Furthermore, if p ∈ ⋂
x∈Λ Br(Λ)(x), then Λ ⊂

Br(Λ)(p), and if Λ ⊂ Bβ(q) for some q ∈ Λ, then r(Λ) ≤ β .

Such a p is called a midpoint of Λ.

Proof Let J = {β ∈ R : ⋂
x∈Λ Bβ(x) 
= ∅}. For β ∈ J define Rβ = ⋂

x∈Λ Bβ(x).
Note that if β ∈ J and β < β ′, then β ′ ∈ J , and Rβ ⊂ Rβ ′ . Rβ is compact, and there-
fore

⋂
β∈J Rβ 
= ∅. Let p ∈ ⋂

β∈J Rβ . Then, for x ∈ Λ, p ∈ Bβ(x) for all β ∈ J

and so d(p,x) ≤ β . Taking the infimum of this over β ∈ J yields d(p,x) ≤ r(Λ)

or p ∈ Rr(Λ), proving the first assertion of the proposition. Now, if x ∈ Λ then
p ∈ Br(Λ)(x), which implies x ∈ Br(Λ)(p) and thus Λ ⊂ Br(Λ)(p). Now suppose
that Λ ⊂ Bβ(q) for some q ∈ Λ. Then for every x ∈ Λ, q ∈ Bβ(x) and thus⋂

x∈Λ Bβ(x) 
= ∅ which implies β ≥ r(Λ), finishing the proof. �

We define K(X) = {Λ ⊂ X : Λ is compact}, and we endow K(X) with the Haus-
dorff metric D(A,B) = max{supt∈B d(t,A), supt∈A d(t,B)}. We also define, for
x = (x0, . . . , x�) ∈ U�+1

α , the witness set of x by wα(x) = ⋂
i Bα(xi) (we are sup-

pressing the dependence of wα on �). Thus wα : U�+1
α → K(X).

Theorem 10 Let X be compact, and α > 0. Suppose that wα : U�+1
α → K(X) is

continuous for � ≤ K + 1, and suppose there exists δ0 > 0 such that whenever Λ =⋂k
i=0 Bi is a finite intersection of closed balls of radius α+δ, δ ∈ (0, δ0], then r(Λ) ≤

α + δ. Then Hypothesis (∗) holds.

The proof will follow from the next proposition.

Proposition 19 Under the hypotheses of Theorem 10, given ε > 0, there exists δ > 0,
δ ≤ δ0 such that for all β ∈ [α,α+δ] we have D(wα(σ ),wβ(σ )) ≤ ε for all simplices
σ ∈ U�+1

α ⊂ U�+1
β .

Proof of Theorem 10 Fix ε < α, and let δ > 0 be as in Proposition 19. Let {Vi} be a
finite collection of open balls of radius α + δ such that

⋂
i Vi 
= ∅, and let {Bi} be the

corresponding collection of closed balls of radius α + δ. Define Λ to be the closure
of

⋂
i Vi and thus

Λ =
⋂

i

Vi ⊂
⋂

i

Vi ⊂
⋂

i

Bi .

Let p be a midpoint of Λ. We will show that d(p,wα(σ )) ≤ ε for any σ =
(x0, . . . , x�+1) ∈ Λ�+1. We have

p ∈
⋂

x∈Λ

Br(Λ)(x) ⊂
�+1⋂

i=0

Br(Λ)(xi) = wr(Λ)(σ ) ⊂ wα+δ(σ )
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since r(Λ) ≤ α + δ. But D(wα(σ ),wα+δ(σ )) ≤ ε from Proposition 19, and so
d(p,wα(σ )) ≤ ε. In particular, there exists q ∈ wα(σ) with d(p,q) ≤ ε. Now, if
x ∈ Bα−ε(p) ∩ Λ, then d(x, q) ≤ d(x,p) + d(p,q) ≤ α − ε + ε = α. Therefore,
(x, x0, . . . , x�) ∈ U�+2

α and so x ∈ Sσ ∩ Λ. Thus Bα−ε(p) ∩ Λ ⊂ ⋂
σ∈U�+1∩Λ�+1 Sσ .

Let B ′
s(p) denote the open ball of radius s, and let V = ⋂

i Vi . Then define W =
B ′

α−ε(p) ∩ V . Then W is a non-empty open set (since p ∈ V ), μ(W) > 0, and
W ⊂ ⋂

σ∈U�+1
α ∩V �+1 Sα . Thus Hypothesis (∗) is satisfied, finishing the proof of The-

orem 10. �

Proof of Proposition 19 Let ε > 0. Note that for β ≥ α and σ ∈ U�+1
α , wα(σ) ⊂

wβ(σ). It thus suffices to show that there exists δ > 0 such that

sup
x∈wβ(σ)

d
(
x,wα(σ )

) ≤ ε for all β ∈ [α,α + δ].

Suppose that this is not the case. Then there exists βj ↓ α and σj ∈ U�+1
α such that

sup
x∈wβj

(σ )

d
(
x,wα(σj )

)
> ε

and thus there exists xn ∈ wβn(σn) with d(xn,wα(σn)) ≥ ε. Let σn = (yn
0 , . . . , yn

� ).
Thus d(xn, y

n
i ) ≤ βn for all i. By compactness, after taking a subsequence, we can as-

sume σn → σ = (y0, . . . , y�) and xn → x. Thus d(x, yi) ≤ α for all i and σ ∈ U�+1
α ,

and x ∈ wα(σ). However, by continuity of wα , wα(σn) → wα(σ), which implies
d(x,wα(σ )) ≥ ε (since d(xn,wα(σn)) ≥ ε), a contradiction. We thus finish the proof
of the proposition. �

We now turn to the case where X is a compact Riemannian manifold of dimen-
sion n, with Riemannian metric g. We will always assume that the metric d on X is
induced from g. Recall that a set Λ ⊂ X is strongly convex if, given p,q ∈ Λ, the
length-minimizing geodesic from p to q is unique, and lies in Λ. The strong convex-
ity radius at a point x ∈ X is defined by ρ(x) = sup{r : Br(x) : is strongly convex}.
The strong convexity radius of X is defined as ρ(X) = inf{ρ(x) : x ∈ X}. It is a basic
fact of Riemannian geometry that, for X compact, ρ(X) > 0. Thus for any x ∈ X and
r < ρ(X), Br(x) is strongly convex.

Theorem 11 Assume as above that X is a compact Riemannian manifold. Let k > 0
be an upper bound for the sectional curvatures of X, and let α < min{ρ(X), π

2
√

k
}.

Then Hypothesis (∗) holds.

Corollary 4 In the situation of Theorem 11, the cohomology groups H�
α,Lp , H�

α ,

H�
α,cont, and H�

α,smooth are finite dimensional and isomorphic to each other and to the

ordinary cohomology of X with real coefficients (and the natural inclusions induce
the isomorphisms). Moreover, Hodge theory for X at scale α holds.

Proof of Theorem 11 From Theorem 10, it suffices to prove the following proposi-
tions.
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Proposition 20 Let α < min{ρ(X), π

2
√

k
}. Then wα : U�+1

α → K(X) is continuous

for � ≤ K .

Proposition 21 Let δ > 0 such that α + δ < min{ρ(X), π

2
√

k
}. Whenever Λ is a

closed, convex set in some Bα+δ(z), then r(Λ) ≤ α + δ.

Of course, the conclusion of Proposition 21 is stronger than the second hypothesis
of Theorem 10, since the finite intersection of balls of radius α + δ is convex and
α + δ < ρ(X).

Proof of Proposition 20 We start with

Claim 1 Let σ = (x0, . . . , x�) ∈ U�+1
α , and suppose that p,q ∈ wα(σ) and that x is

on the minimizing geodesic from p to q (but not equal to p or q). Then Bε(x) ⊂
wα(σ) for some ε > 0.

Proof of Claim For points r, s, t in a strongly convex neighborhood in X, we define
∠rst to be the angle that the minimizing geodesic from s to r makes with the min-
imizing geodesic from s to t . Let γ be the geodesic from p to q , and for fixed i let
φ be the geodesic from x to xi . Now, the angles that φ makes with γ at x satisfy
∠pxxi + ∠xixq = π , and therefore one of these angles is greater than or equal to
π/2. Assume, without loss of generality, that θ = ∠pxxi ≥ π/2. Let c = d(x, xi),
r = d(p,x), and d = d(p,xi) ≤ α (since p ∈ wα(σ)). Now consider a geodesic tri-
angle in the sphere of curvature k with vertices p′, x′, and x′

i such that

d
(
p′, x′) = d(p,x) = r, d

(
x′, x′

i

) = d(x, xi) = c and ∠p′x′x′
i = θ,

and let d ′ = d(p′, x′
i ). Then, the hypotheses on α imply that the Rauch comparison

theorem (see e.g. do Carmo [12]) holds, and we can conclude that d ′ ≤ d . How-
ever, with θ ≥ π/2, it follows that on a sphere, where p′, x′, x′

i are inside a ball
of radius less than the strong convexity radius, that c′ < d ′. Therefore, we have
c = c′ < d ′ ≤ d ≤ α and there is an ε > 0 such that y ∈ Bε(x) implies d(y, xi) ≤ α.
Taking the smallest ε > 0 so that this is true for each i = 0, . . . , � finishes the proof
of the claim. �

Corollary 5 (Corollary of Claim) For σ ∈ U�+1
α , either wα(σ) consists of a single

point, or every point of wα(σ) is an interior point or the limit of interior points.

Now suppose that σj ∈ U�+1
α and σj → σ in U�+1

α . We must show wα(σj ) → wα(σ),
that is,

(a) supx∈wα(σj ) d(x,wα(σ )) → 0,
(b) supx∈wα(σ) d(x,wα(σj )) → 0.

In fact, (a) holds for any metric space and any α > 0. Suppose that (a) were not true.
Then there exists a subsequence (still denoted by σj ) and η > 0 such that

sup
x∈wα(σj )

d
(
x,wα(σ )

) ≥ η
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and therefore there exists yj ∈ wα(σj ) with d(yj ,wα(σ )) ≥ η/2. After taking another

subsequence, we can assume yj → y. But if σj = (x
j

0 , . . . , x
j

� ) and σ = (x0, . . . , x�),

then d(yj , x
j
i ) ≤ α, which implies d(y, xi) ≤ α for each i and thus y ∈ wα(σ). But

this is impossible given d(yj ,wα(σ )) ≥ η/2.
We use the corollary to Claim 1 to establish (b). First, suppose that wα(σ) consists

of a single point p. We show that d(p,wα(σj )) → 0. Let pj ∈ wα(σj ) such that
d(p,pj ) = d(p,wα(σj )). If d(p,pj ) does not converge to 0, then, after taking a
subsequence, we can assume d(p,pj ) ≥ η > 0 for some η. But after taking a further
subsequence, we can also assume pj → y for some y. However, as in the argument
above, it is easy to see that y ∈ wα(σ) and therefore y = p, a contradiction, and so
(b) holds in this case.

Now suppose that every point in wα(σ) is either an interior point or the limit of
interior points. If (b) did not hold, there would be a subsequence (still denoted by σj )
such that

sup
x∈wα(σ)

d
(
x,wα(σj )

) ≥ η > 0

and thus there exists pj ∈ wα(σ) such that d(pj ,wα(σj )) ≥ η/2. After taking an-
other subsequence, we can assume pj → p and p ∈ wα(σ), and, for j sufficiently
large, d(p,wα(σj )) ≥ η/4. If p is an interior point of wα(σ), then d(p,xi) < α for

i = 0, . . . , �. But then, for all j sufficiently large, d(p,x
j
i ) ≤ α for each i. But this

implies p ∈ wα(σj ), a contradiction. If p is not an interior point, then p is a limit
point of interior points qm. But then, from above, qm ∈ wα(σjm) for jm large, which
implies d(p,wα(σjm)) → 0, a contradiction. Thus we have established (b) and fin-
ished the proof of Proposition 20. �

Proof of Proposition 21 Let δ be such that α + δ < min{ρ(X), π

2
√

k
}, and let Λ be

any closed convex set in Bα+δ(z). We will show r(Λ) ≤ α + δ. If z ∈ Λ, we are done,
for then Λ ⊂ Bα+δ(z) implies r(Λ) ≤ α + δ by Proposition 18. If z /∈ Λ let z0 ∈ Λ

such that d(z, z0) = d(z,Λ) (the closest point in Λ to z). Now let y0 ∈ Λ such that
d(z0, y0) = maxy∈Λ d(z0, y). Let γ be the minimizing geodesic from z0 to y0, and φ

the minimizing geodesic from z0 to z. Since Λ is convex γ lies on Λ. If θ is the angle
between γ and φ, θ = ∠zz0y0, then, by the first variation formula of arc length [12],
θ ≥ π/2; otherwise the distance from z to points on γ would be initially decreasing.
Let c = d(z, z0), d = d(z0, y0), and R = d(z, y0). In the sphere of constant curvature
k, let z′, z′

0, y′
0 be the vertices of a geodesic triangle such that d(z′, z′

0) = d(z, z0) = c,
d(z′

0, y
′
0) = d(z0, y0) = d , and ∠z′z′

0y
′
0 = θ . Let R′ = d(z′, y′

0). Then by the Rauch
comparison theorem, R′ ≤ R. However, it can easily be checked that on the sphere of
curvature k it holds that d ′ < R′, since z′, z′

0, and y′
0 are all within a strongly convex

ball and θ ≥ π/2. Therefore, d = d ′ < R′ ≤ R ≤ α + δ. Thus Λ ⊂ Bα+δ(z0) with
z0 ∈ Λ, which implies r(Λ) ≤ α + δ by Proposition 18. This finishes the proof of
Proposition 21. �

The proof of Theorem 11 is finished. �
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Appendix A: An Example Whose Codifferential Does Not Have Closed Range

For convenience, we fix the scale α = 10; any large enough value is suitable for our
construction. We consider a compact metric measure space X of the following type.

As a metric space, it has three cluster points x∞, y∞, z∞ and discrete points
(xn)n∈N, (yn)n∈N, (zn)n∈N converging to x∞, y∞, z∞, respectively.

We set Kx := {xk : k ∈ N ∪ {∞}}, Ky := {yk : k ∈ N ∪ {∞}}, and Kz := {zk : k ∈
N ∪ {∞}}. Then X is the disjoint union of the three “clusters” Kx,Ky,Kz.

We require

d(x∞, y∞) = d(y∞, z∞) = α and d(x∞, z∞) = 2α.

We also require

d(xk, yn) < α precisely when n ∈ {2k,2k + 1,2k + 2}, n ∈ N, k ∈ N ∪ {∞},
d(zk, yn) < α precisely when n ∈ {2k − 1,2k,2k + 1}, n ∈ N, k ∈ N ∪ {∞}.

We finally require that the clusters Kx,Ky,Kz have diameter < α, and that the dis-
tance between Kx and Ky as well as between Kz and Ky is ≥ α.

This configuration can easily be found in an infinite-dimensional Banach space
such as l1(N). For example, in l1(N) consider the canonical basis vectors e0, e1, . . . ,
and set

x∞ := −αe0, y∞ := 0, z∞ := αe0.

Define then

xk := −
(

α + 1

10k
− 1

2k
− 1

2k + 1
− 1

2k + 2

)
e0

+ 1

2k
e2k + 1

2k + 1
e2k+1 + 1

2k + 2
e2k+2,

yk := 1

k
ek,

zk :=
(

α + 1

10k
− 1

2k − 1
− 1

2k
− 1

2k + 1

)
e0

+ 1

2k − 1
e2k−1 + 1

2k
e2k + 1

2k + 1
e2k+1.

We can now give a very precise description of the open α-neighborhood Ud of the
diagonal in Xd . It contains all the tuples whose entries
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• all belong to Kx ∪ {y2k, y2k+1, y2k+2} for some k ∈ N; or
• all belong to Ky ∪ {xk, xk+1, zk+1} for some k ∈ N; or
• all belong to Ky ∪ {xk, zk, zk+1} for some k ∈ N; or
• all belong to Kz ∪ {y2k−1, y2k, y2k+1} for some k ∈ N.

For the closed α-neighborhood, one has to add tuples whose entries all belong to
Ky ∪ {x∞} or to Ky ∪ {z∞}.

This follows by looking at the possible intersections of α-balls centered at our
points.

In this topology, every set is a Borel set. We give x∞, y∞, z∞ measure zero. When
considering L2-functions on the Ud , we can therefore ignore all tuples containing one
of these points.

We specify μ(xn) := μ(zn) := 2−n and μ(yn) := 2−2n
; in this way, the total mass

is finite.
We form the L2-Alexander chain complex at scale α and complement it by

C−1 := R
3 = Rx ⊕Ry ⊕Rz; the three summands standing for the three clusters. The

differential c−1 : C−1 → L2(X) is defined by (α,β, γ ) �→ αχKx + βχKy + γχKz ,
where χKj

denotes the characteristic function of the cluster Kj .
Restriction to functions supported on K∗+1

x defines a bounded surjective cochain
map from the L2-Alexander complex at scale α for X to the one for Kx . Note that
diam(Kx) < α; consequently, its Alexander complex at scale α is contractible.

Therefore, looking at the long exact sequence associated to a short exact sequence
of Banach cochain complexes, the cohomology of X is isomorphic (as topological
vector spaces) to the cohomology of the kernel of this projection, i.e. to the cohomol-
ogy of the Alexander complex of functions vanishing on Kk+1

x .
This can be done two more times (looking at the kernels of the restrictions to Ky

and Kz), so that finally we arrive at the chain complex C∗ of L2-functions on Xk+1

vanishing at Kk+1
x ∪ Kk+1

y ∪ Kk+1
z .

In particular, C−1 = 0 and C0 = 0.
We now construct a sequence in C1 whose differentials converge in C2, but such

that the limit point does not lie in the image of c1.
Following the above discussion, the α-neighborhood of the diagonal in X2 con-

tains in particular the “1-simplices” vk := (xk, zk) and v′
k := (xk, zk+1) and their “in-

verses” vk : −(zk, xk), v′
k := (zk+1, xk).

We define fλ ∈ C1 with fλ(vk) := fλ(v
′
k) := −fλ(vk), fλ(v

′
k) := fλ(vk) :=

bλ,k := 2λk , and fn(v) = 0 for all other simplices.
Note that, for 0 < λ < 1,

∫

X2
|f |2 =

∞∑

k=1

∣
∣f (vk)

∣
∣2μ(vk) + ∣

∣f
(
v′
k

)∣∣2μ
(
v′
k

) + ∣
∣f

(
vk

)∣∣2μ
(
vk

) + ∣
∣f

(
v′
k

)∣∣2μ
(
v′
k

)

=
∞∑

k=1

2 · (22λk2−2k + 22λk2−2k−1)

which is a finite sum, whereas for λ = 1 the sum is no longer finite.
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Let us now consider gλ := c1(fλ). It vanishes on all “2-simplices” (points in X2)
except those of the form

• dk := (xk, zk, zk+1) and more generally dσ
k := σ(xk, zk, zk+1) for σ ∈ S3 a permu-

tation of three entries;
• ek := (xk−1, zk, xk) or more generally dσ

k as before;
• on degenerate simplices of the form (xk, zk, xk) etc. g vanishes because f (xk, zk) =

−f (zk, xk).

We obtain

gλ(dk) = −f
(
v′
k

) + f (vk) = 0,

gλ(ek) = f
(
vk

) + f
(
v′
k−1

) = −2λk + 2λ(k−1) = 2λk · (2−λ − 1
)
.

Similarly, gλ(d
σ
k ) = 0 and gλ(e

σ
k ) = sign(σ )gλ(ek).

We claim that g1, defined with these formulas, belongs to L2(X3) and is the limit
in L2 of gλ as λ tends to 1.

To see this, we simply compute the L2-norm

∫

X3
|g1 − gλ|2 = 6

∞∑

k=1

∣∣2k−1 − 2λk
(
1 − 2−λ

)∣∣221−3k

≤ 6
(

sup
k∈N

2−k/2
∣∣2−1 − 2(λ−1)k

(
1 − 2−λ

)∣∣2
)

·
∞∑

k=1

21−k/2

λ→1−→ 0

(the factor 6 comes from the six permutations of each non-degenerate simplex which
each contribute equally).

The supremum tends to zero because each individual term does so even without
the factor 2−k/2 and the sequence is bounded.

Now we study which properties the f ∈ C1 with c1(f ) = g1 must have.
Observe that for an arbitrary f ∈ C1, c1f (eσ

k ) is determined by f (vk), f (vk),

f (v′
k−1), f (v′

k−1) (as f vanishes on Kx ).
If c1f must vanish on degenerate simplices (and this is the case for g1), then

f (vk) = −f (vk) and f (v′
k) = −f (v′

k).
c1f (dσ

k ) = 0 then implies that f (vk) = f (v′
k).

It is now immediate from the formulas for c1f (dk) and c1f (ek) that the values of
f at vk , v′

k are determined by c1f (dk), c1f (ek) up to addition of a constant.
Finally, observe that (in the Alexander cochain complex without growth condi-

tions) f1 (which is not in L2) satisfies c1(f1) = g1.
As constant functions are in L2, we observe that f1 + K is not in L2 for any

K ∈ R, nor is any function f on X2 which coincides with f1 + K on vk , v′
k , vk , v′

k .
But these are the only candidates which could satisfy c1(f ) = g1. It follows that

g1 is not in the image of c1. On the other hand, we constructed it so that it is in the
closure of the image. Therefore, the image is not closed.
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A.1 A Modified Example Where Volumes of Open and Closed Balls Coincide

The example given has one drawback: Although at the chosen scale α open and closed
balls coincide in volume (and even as sets, except for the balls around x∞, y∞, z∞),
for other balls this is not the case—and necessarily so, as we construct a zero-
dimensional object.

We modify our example as follows, by replacing each of the points xk, yk, zk by a
short interval: Inside X×[0,1], with l1 metric (that is, dY ((x, t), (y,u)) = dX(x, y)+
|t − u|), consider

Y =
⋃

k∈N∪{∞}
{xk, yk, zk} × [

0,1/(12k)
]
.

For convenience, let us write Ix,k for the interval {xk}×[0,1/(12k)], and similarly
for the yk and zk . On each of these intervals we then put the standard Lebesgue
measure weighted by a suitable factor, so that μY (Ix,k) = μ(xk), and similarly for
the yk and zk .

Now, if two points xk, yn are at distance less than α in X, then they are at distance
< α − 1/k; the corresponding statement holds for all other pairs of points. On the
other hand, because of our choice of metric, d((xk, t), (yn, s)) ≥ d(xk, yn) and again
the corresponding statement holds for all other pairs of points in Y . It follows that
the α-neighborhood of the diagonal in Y k is the union of products of the correspond-
ing intervals, and exactly those intervals show up where the corresponding tuple is
contained in the 1-neighborhood of the diagonal in Xk .

It is now quite hard to explicitly compute the cohomology of the L2-Alexander
cochain complex at scale α.

However, we do have a projection Y → X, namely the projection on the first co-
ordinate. By the remark about the α-neighborhoods, this projection extends to a map
from the α-neighborhoods of Y k onto those of Xk , which is compatible with the
projections onto the factors.

It follows that pullback of functions defines a bounded cochain map (in the reverse
direction) between the L2-Alexander cochain complexes at scale α. Note that this is
an isometric embedding by our choice of the measures.

This cochain map has a one-sided inverse given by integration of a function on
(the α-neighborhood of the diagonal in) Y k over a product of intervals (divided by
the measure of this product) and assigning this value to the corresponding tuple in
Xk . By Cauchy–Schwarz, this is bounded with norm 1.

As pullback along projections commutes with the weighted integral we are us-
ing, one checks easily that this local integration map is also a cochain map for our
L2-Alexander complexes at scale α.

Consequently, the induced maps in cohomology give an isometric inclusion with
inverse between the cohomology of X and of Y .

We have shown that in H 2(X) there are non-zero classes of norm 0. Their images
(under pullback) are non-zero classes (because of the retraction given by the integra-
tion map) of norm 0. Therefore, the cohomology of Y is non-Hausdorff, and the first
codifferential does not have a closed image, either.
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Appendix B: An Example of a Space with Infinite-Dimensional α-Scale
Homology

This appendix was contributed by Anthony W. Baker, Mathematics and Computing
Technology, The Boeing Company (e-mail: anthony.w.baker@boeing.com).

The work in the main body of this paper has inspired the question of the existence
of a separable, compact metric space with infinite-dimensional α-scale homology.
This appendix provides one such example and further shows the sensitivity of the
homology to changes in α.

Let X be a separable, complete metric space with metric d , and α > 0 a “scale.”
Define an associated (generally infinite) simplicial complex CX,α to (X,d,α). Let
X�+1, for � > 0, be the (� + 1)-fold Cartesian product, with metric denoted by d, d :
X�+1 × X�+1 → R where d(x;y) = maxi=0,...,� d(xi;yi). Let

U�+1
α (X) = U�+1

α = {
x ∈ X�+1 : d(

x;D�+1) ≤ α
}
,

where D�+1 ⊂ X�+1 is the diagonal, so D�+1 = {t ∈ X : (t, . . . , t), � + 1 times}. Let
CX,α = ⋃∞

t=0 U�+1
α . This has the structure of a simplicial complex whose � simplices

consist of points of U�+1
α .

The α-scale homology is that homology generated by the simplicial complex
above.

The original exploration of example compact metric spaces resulted in low-
dimensional α-scale homology groups. Missing from the results were any examples
with infinite-dimensional homology groups. Also, examination of the first α-scale
homology group was less promising for infinite-dimensional results; the examina-
tion resulted in the proof that the first homology group is always finite, as shown in
Sect. 9.

The infinite-dimensional example in this paper was derived through several failed
attempts to prove that the α-scale homology was finite. The difficulty was the inability
to slightly perturb vertices and still have the perturbed object remain a simplex. This
sensitivity is derived from the “equality” in the definition of U�+1

α . It is interesting to
note the contrast between the first homology group and higher homology groups. For
the first homology group all 1-cycles can be represented by relatively short simplices;
there is no equivalent statement for higher homology groups.

Lemma 5 A 1-cycle in α-scale homology can be represented by simplices with length
less than or equal to α.

Proof For any [xi, xj ] simplex with length greater than α there exists a point p such
that d(xi,p) ≤ α and d(xj ,p) ≤ α. This indicates that [xi,p], [p,xj ], and [xi,p, xj ]
are simplices. Since [xi,p, xj ] is a simplex, we can substitute [xi,p] + [p,xj ] for
[xi, xj ] and remain in the original equivalence class. �

In the section that follows we present an example that relies on the rigid nature
of the definition to produce an infinite-dimensional homology group. The example
is a countable set of points in R

3. One noteworthy point is that from this example
it is easy to construct a 1-manifold embedded in R

3 with infinite α-scale homology.

http://anthony.w.baker@boeing.com
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In addition to showing that for a fixed α the homology is infinite, we consider the
sensitivity of the result around that fixed α.

The existence of an infinite-dimensional example leads to the following question
for future consideration: Are there necessary and sufficient conditions on (X,d) for
the α-scale homology to be finite?

B.1 An Infinite-Dimensional Example

The following example illustrates a space such that the second homology group is
infinite. For the discussion below, fix α = 1.

Consider the set of points {A,B,C,D} in the diagram below such that

d(A,B) = d(B,C) = d(C,D) = d(A,D) = 1,

d(A,C) = d(B,D) = √
2.

The lines in the diagram suggest the correct structure of the α-simplices for
α = 1. The 1-simplices are {{A,B}, {B,C}, {C,D}, {A,D}, {A,C}, {B,D}}. The
2-simplices are the faces {{A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}}. There are no
(non-degenerate) 3-simplices. A 3-simplex would imply a point such that all of the
points are within α = 1, and no such point exists. The chain [ABC] − [ABD] +
[ACD] − [BCD] is a cycle with no boundary.

Define R as R = {r ∈ [0,1,1/2,1/3, . . . ]}. In this example, note that R acts as an
index set, and the dimension of the homology is shown to be at least that of R.

Let X = {A,B,C,D} × R. Define Ar = (A, r), Br = (B, r), Cr = (C, r), and
Dr = (D, r).

We can again enumerate the 1-simplices for X. Let r, s, t, u ∈ R. The 1-simplices
are

{{Ar,Bs}, {Br,Cs}, {Cr,Ds}, {Ar,Ds},
{Ar,As}, {Br,Bs}, {Cr,Cs}, {Dr,Ds},

{Br,Dr}, {Ar,Cr}
}
.
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The last two 1-simplices (highlighted) must have the same index in R due to the
distance constraint.

The 2-simplices are
{{Ar,Bs,Cr}, {As,Br,Dr}, {Ar,Cr,Ds}, {Br,Cs,Dr},
{Ar,Bs,Br}, {Br,Cs,Cr}, {Cr,Ds,Dr}, {Ar,Ds,Dr},
{As,Ar,Bs}, {Bs,Br,Cs}, {Cs,Cr,Ds}, {Ar,Ar,Ds},
{Ar,As,At }, {Br,Bs,Bt }, {Cr,Cs,Ct }, {Dr,Ds,Dt }

}
.

The 3-simplices are
{{Ar,Bs,Bt ,Cr}, {As,At ,Br,Dr}, {Ar,Cr,Ds,Dt }, {Br,Cs,Ct ,Dr},
{Ar,Bt ,Bs,Br }, {Br,Ct ,Cs,Cr}, {Cr,Dt ,Ds,Dr}, {Ar,Dt ,Ds,Dr},
{At,As,Ar,Bs}, {Bt ,Bs,Br,Cs}, {Ct ,Cs,Cr,Ds}, {At,Ar,Ar,Ds},
{Ar,As,At ,Au}, {Br,Bs,Bt ,Bu}, {Cr,Cs,Ct ,Cu}, {Dr,Ds,Dt ,Du}

}
.

Define σr := [ArBrCr ]− [ArBrDr ]+ [ArCrDr ]− [BrCrDr ]. By calculation, σr

is shown to be a cycle. Suppose that there existed a chain of 3-simplices such that the
σr is the boundary; then γ = [ArAsBrDr ] must be included in the chain to eliminate
[ArBrDr ]. Since the boundary of γ contains [AsBrDr ], there must be a term to
eliminate this term. The only term with such a boundary is of the form [AsAtBrDr ].
Again, a new simplex to eliminate the extra boundary term is in the same form. Either
this goes on ad infinitum, impossible since the chain is finite, or it returns to Ar , in
which case the boundary of the original chain is 0 (contradicting that the [ArBrDr ]
term is eliminated). For all r ∈ R, σr is a generator for homology.

If s 
= t then σs and σt are not in the same equivalence class. Suppose they are. The
same argument above shows that any term with the face [AtBtDt ] will necessarily
have a face [AuBtDt ] for some u ∈ R. Such a term must be eliminated since it cannot
be in the final image, but such an elimination would cause another such term or cancel
out the [AtBtDt ]. In either case the chain would not satisfy the boundary condition
necessary to equivalence σs and σt together.

Each σs is a generator of homology and, therefore, the dimension of the homology
is at least the cardinality of R, which in this case is infinite.

Theorem 12 For α = 1, the second α-scale homology group for

X = {A,B,C,D} × R

is infinite dimensional.

B.2 Consideration for α < 1

The example above is tailored for scale α = 1. In this metric space the nature of the
second α-scale homology group changes significantly as α changes.

Consider when α falls below one. In this case the structure of the simplices col-
lapses to simplices restricted to a line (with simplices of the form {{Ar,As,At },
{Br,Bs,Bt }, {Cr,Cs,Ct }, {Dr,Ds,Dt }}). These are clearly degenerate simplices re-
sulting in a trivial second homology group.
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In this example the homology was significantly reduced as α decreased. This is
not necessarily always the case. The above example could be further enhanced by
replicating smaller versions of itself in a fractal-like manner, so that as α decreases
the α-scale homology encounters many values with infinite-dimensional homology.

B.3 Consideration for α > 1

There are two cases to consider when α > 1. The first is the behavior for very large α

values. In this case the problem becomes simple, as illustrated by the lemma below.
Define α large with respect to d if there exists ρ ∈ X such that d(ρ, y) ≤ α for all

y ∈ X.

Lemma 6 Let X be a separable, compact metric space with metric d . If α is large
with respect to d , then the α-scale homology of X is trivial.

Proof Let ρ ∈ X satisfy the attribute above. Then U�+1
α = X�+1 since

d
(
(ρ, . . . , ρ), (x0, x1, . . . , x�)

) ≤ α

for all values of xi .
Let σ = ∑k

j=1 cj (a
j

0 , a
j

1 , . . . , a
j
n) be an n-cycle. Define

σρ =
∑

j=1,k

cj

(
a

j

0 , a
j

1 , . . . , a
j
n, ρ

)
.

The n + 1-cycle, σρ , acts as a cone with base σ . Since σ is a cycle, the terms in the
boundary of σρ containing ρ cancel each other out to produce zero. The terms without
ρ are exactly the original σ . Therefore, there exist no cycles without boundaries. This
proves that for α large and X infinite the homology of X is trivial. �

In the case where α > 1 but is still close to 1, the second homology group changes
significantly but does not completely disappear. In the example, simplices that ex-
isted only by the equality in the definition of α-scale homology when α = 1 now
find neighboring 2-simplices joined by higher dimensional 3-simplices. The result is
larger equivalence classes of 2-cycles. This reduces the infinite-dimensional homol-
ogy for α = 1 to a finite dimension for α slightly larger than 1. As α gets closer to 1
from above the dimension of the homology increases without bound.

Interestingly, the infinite characteristics for α = 1 are tied heavily to the fact that
the simplices that determined the structure lived on the bounds of being simplices.
As α changes from 1, the rigid restrictions on the simplices no longer occur in this
example. The result is a significant reduction in the dimension of the homology.

Appendix C: Open Problems and Remarks

Throughout the text, we have attempted to give indications to promising areas of
future research. Here we summarize some of the main points.
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• How do the methods of this paper apply to concrete examples, in particular, to
the data in Carlsson et al. [6]? Specifically, can we recognize surfaces? Which
substitutes for torsion do we have at hand?

• For non-oriented manifolds, can one introduce a twisted version of the coefficients
that would make the top-dimensional Hodge cohomology visible?

• Is the Hodge cohomology independent of the choice of neighborhoods (Vietoris-
Rips or ours)? Under which properties of metric spaces are the images of the core-
striction maps (mentioned in Remark 5) independent of these choices?

• The Cohomology Identification Problem (Question 1): To what extent are H�
L2,α

(X)

and H�
α(X) isomorphic?

• The Continuous Hodge Decomposition (Question 2): Under what conditions on X

and α > 0 is it true that there is an orthogonal direct sum decomposition of C�+1
α

in boundaries, coboundaries, and harmonic functions?
• The Poisson Regularity Problem (Question 3): For α > 0 and � > 0, suppose that

Δf = g where g ∈ C�+1
α and f ∈ L2

a(U
�+1
α ). Under what conditions on (X,d,μ)

is f continuous?
• The Harmonic Regularity Problem (Question 4): For α > 0 and � > 0, suppose that

Δf = 0 where f ∈ L2
a(U

�+1
α ). What conditions on (X,d,μ) would imply that f

is continuous?
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