66 research outputs found

    Mutagenesis by hydrogen peroxide treatment of mammalian cells: a molecular analysis

    Get PDF
    Hydrogen peroxide is an oxidizing agent which can be generated intracellularly either during normal metabolism or by treatment with external agents including solar UV radiation. Simian cells (CV-1) transfected with the SV40-based shuttle vector plasmid pZ189 have been treated with H2O2 and then incubated to allow repair and replication of the plasmid. The frequency of mutations at the supF locus of the recovered plasmid increases by a factor of up to four over the spontaneous value. The nucleotide changes associated with 100 spontaneous and 100 H2O2-induced mutants have been determined directly by sequencing a 150 bp fragment that includes the entire supF tRNA coding region. Deletions were observed in ∼45% of both the spontaneous and induced mutants, whereas single or multiple base changes arose in 68 and 57% of the induced and spontaneous mutants respectively. The spectrum of induced mutations is characterized by (i) the occurrence of deletions associated with base changes (16% of all mutants analysed) and (ii) small deletions of 3 bp and less (51% of all deletion mutants sequenced). Sixty-five per cent (15 out of 23) of all small deletions (spontaneous and induced) are associated with runs of between two and five identical bases and eight of them arise at a mutational ‘hotspot' region of five cytosines between bp 172 and 176. The majority (19 out of 30) of completely sequenced deletions observed in the spontaneous spectrum contain either (i) small (2-10 bp) direct repeat sequences that lie immediately outside one deletion terminus and immediately inside the second deletion terminus or (ii) small (2-3 bp) inverted repeat sequences lying immediately inside the two deletion termini. Most deletions that we have observed are therefore likely to arise as a consequence of specific aspects of DNA structur

    Endogenous glutathione levels modulate the frequency of both spontaneous and long wavelength ultraviolet induced mutations in human cells

    Get PDF
    Spontaneous and induced mutations at the hypoxanthine guanine phosphoribosyt transferase locus have been measured in cultured human lymphoblastoid (TK6) cell populations under conditions in which cellular glutathione has been severely depleted by overnight treatment with buthionine-S,R-sulfoximine. At maximum levels of glutathione depletion, the increase in spontaneous frequency is at least 5-fold, a finding consistent with the possibility that cellular redox state can modulate the levels of pre-mutagenic damage arising as a result of normal metabolism in cultured human cells. Glutathione depletion does not lead to a significant enhancement in the frequency of mutants that arise as a result of irradiation at 313 run but does lead to a 3-fold increase in mutations resulting from irradiation at 365 nm. These results indicate that glutathione may quench reactive intermediates that would otherwise lead to spontaneous mutations as well as a fraction of UVA radiation-induced premutagenic damag

    Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Get PDF
    Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr?1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr?1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851)

    Sediment routing and basin evolution in Proterozoic to Mesozoic east Gondwana: A case study from southern Australia

    Get PDF
    Sedimentary rocks along the southern margin of Australia host an important record of the break-up history of east Gondwana, as well as fragments of a deeper geological history, which collectively help inform the geological evolution of a vast and largely underexplored region. New drilling through Cenozoic cover has allowed examination of the Cretaceous rift-related Madura Shelf sequence (Bight Basin), and identification of two new stratigraphic units beneath the shelf; the possibly Proterozoic Shanes Dam Conglomerate and the interpreted Palaeozoic southern Officer Basin unit, the Decoration Sandstone. Recognition of these new units indicates an earlier basinal history than previously known. Lithostratigraphy of the new drillcore has been integrated with that published from onshore and offshore cores to present isopach maps of sedimentary cover on the Madura Shelf. New palynological data demonstrate progression from more localised freshwater-brackish fluvio-lacustrine clastics in the early Cretaceous (Foraminisporis wonthaggiensis – Valanginian to Barremian) to widespread topography-blanketing, fully marine, glauconitic mudrocks in the mid Cretaceous (Endoceratium ludbrookiae – Albian). Geochronology and Hf-isotope geochemistry show detrital zircon populations from the Madura Shelf are comparable to those from the southern Officer Basin, as well as Cenozoic shoreline and palaeovalley sediments in the region. The detrital zircon population from the Shanes Dam Conglomerate is defined by a unimodal ~1400 Ma peak, which correlates with directly underlying crystalline basement of the Madura Province. Peak ages of ~1150 Ma and ~1650 Ma dominate the age spectra of all other samples, indicating a stable sediment reservoir through much of the Phanerozoic, with sediments largely sourced from the Albany-Fraser Orogen and Musgrave Province (directly and via multiple recycling events). The Madura Shelf detrital zircon population differs from published data for the Upper CretaceousCeduna Delta to the east, indicating significant differences in sediment provenance and routing between the Ceduna Sub-basin and central Bight Basin

    Genome-Wide and Abdominal MRI-Imaging Data Provides Evidence that a Genetically Determined Favourable Adiposity Phenotype is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease and Hypertension

    Get PDF
    Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such “favourable adiposity” alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined magnetic resonance imaging (MRI) data with genome-wide association studies (GWAS) of body fat % and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity, but a favourable metabolic profile. Consistent with previous studies, individuals carrying more “favourable adiposity” alleles had higher body fat % and higher BMI, but lower risk of type 2 diabetes, heart disease and hypertension. These individuals also had higher subcutaneous fat, but lower liver fat and lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14 and IRS1, whilst the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified “favourable adiposity” alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglyceride in metabolically low risk depots.Diabetes UK RD Lawrence fellowship, European Research Council, Wellcome Trust and Royal Society grant, European Regional Development Fund, Medical Research Council, German Federal Ministry of Education and Research, German Research Foundation, Innovative Medicines Initiative Joint Undertaking, European Union's Seventh Framework Programme, Dutch Science Organisation, Scottish Government Health Directorates, Scottish Funding Council and Medical Research Council UK and the Wellcome Trust

    Management of acute hypercortisolism

    Full text link
    An occasional patient with Cushing's syndrome may require urgent management primarily because the chronic ravages of hypercortisolism have caused the patient to be in a precarious metabolic condition. The side effects of prolonged excess corticosteroids increase the risk of operations in such patients and must be considered in overall management. Among the many effects of hypercortisolism to be considered are hypertension, diabetes, ocular hypertension, myopathies, dermatologic changes including skin infection, pancreatitis, osteoporosis, pathological fractures, peptic ulcers, renal calculi, coagulopathies, hypokalemia, poor wound healing, and increased susceptibility to infection. The most effective way to avert these complications is by earlier diagnosis and definitive treatment of Cushing's syndrome. The present report includes a review of the etiology and diagnosis of Cushing's syndrome and the management of problems associated with hypercortisolism . Il est possible qu'un malade atteint de maladie de Cushing ait besoin d'être traité sans attente en raisons de troubles métaboliques sévères dus aux effets nocifs de l'hypercortisolisme chronique qui augmentent les risques opératoires et doivent être pris en considération avant tout traitement. Il en est ainsi de l'hypertension, du diabète, de l'hypertension intra-oculaire, des lésions dermiques comprenant l'infection cutanée, la pancréatite, l'ostéoporose, les fractures pathologiques, l'ulcère peptique, les calculs rénaux, les coagulopathies, l'hypokaliémie, la lenteur du processus de cicatrisation et l'augmentation de la suceptibilité à l'infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41309/1/268_2005_Article_BF01655367.pd

    Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene.

    No full text
    Cellular effects of ultraviolet A (UVA) radiation include peroxidation of membrane lipids as well as a decrease in intracellular glutathione. We have investigated whether damage to membrane lipids is involved in the activation of the human heme oxygenase-1 gene by UVA. Irradiation of human skin fibroblasts in the presence of the lipophilic antioxidants, butylated hydroxytoluene and alpha-tocopherol, enhances the UVA-induced HO-1 mRNA accumulation, suggesting that peroxidation of plasma membrane lipids is not involved. Furthermore, sodium ascorbate, which induces lipid peroxidation mainly in the plasma membrane, induces HO-1 mRNA to low levels only. The decrease in GSH by UVA radiation is not affected by the presence of the lipophilic antioxidants while ascorbate treatment increases the intracellular GSH by twofold above controls. These results indicate that peroxidation of internal membrane lipids, a decrease in the intracellular GSH levels and the integrity of the plasma membrane are all important for the UVA-induction of heme oxygenase-1. Both nonenzymatic as well as enzymatic lipid peroxidation metabolites are inducers of heme oxygenase-1. The nonenzymatic lipid peroxidation product 4-hydroxynonenal induces heme oxygenase-1 mRNA up to 40-fold and the phospholipase metabolites diacylglycerol and arachidonic acid induce this mRNA by three-to sixfold above basal levels. We also demonstrate that the cyclooxygenase metabolites of arachidonic acid are important for the UVA-activation of the heme oxygenase-1 gene
    corecore