212 research outputs found

    On Standard Reductions to Relative Gravity Measurements. A Case Study Through the Establishment of the New Local Gravity Net in the Province of Valencia (Spain)

    Full text link
    This is an author's accepted manuscript of an article published in: “Survey Review"; Volume 43, Issue 319, 2011; copyright Taylor & Francis; available online at: http://dx.doi.org/10.1179/003962610X12747001420825Standard reductions to gravity readings due to Earth tides, ocean loading and attraction, polar motion, instrumental height and air pressure variations and loading of atmospheric masses are studied in this paper from a practical point of view, that is, taking into account their numerical values and their influence on gravimetric readings and relative gravimetric observations. The study was carried out using the observations and definition of a new local gravimetric net. This new local gravimetric net has been established in the province of Valencia (Eastern Spain) to meet the increasing requirements of geophysics, geology, geodesy and geodynamics. The net comprises 21 sites, which are an average of 45 km apart and was measured using Lacoste & Romberg D203 and G301 gravimeters. Gravity values were determined using one fixed station in relation to an absolute one and 202 relative gravimetric observables. Reductions are applied for Earth tides (with real accurate amplitude and phase-difference for the principal tidal waves analysed from 301 digitally recorded days of gravity readings) where oceanic attraction and loading has been considered. In addition, reductions for polar motion, vertical gradient to instrument height and air pressure and loading of atmospheric masses have been applied. The net was established using least square adjustment where the weights of each relative gravimetric observable were determined by iterative estimation in accordance with the Huber robust estimation procedure. Obtained standard deviations of the final gravity values have an average value of 18x10-8 ms-2 (18 ”Gal), minimum value of 10x10-8 ms-2 and maximum value of 26x10-8 ms-2 . The statistical analysis of the results concludes with a precision and reliability determination. Discussion of the numerical values obtained in the standard gravimetric reductions shows the importance of each one in the final solution, bearing in mind that the relative gravimetric observables have been obtained using Lacoste & Romberg instruments and the geographical location of the net. The main conclusion is that only Earth tides reduction (with approximate amplitude and phase-difference numbers for the principal tidal waves) have to be taken into accountMartĂ­n Furones, ÁE.; Anquela JuliĂĄn, AB.; Padin Devesa, J.; BernĂ© Valero, JL. (2011). On Standard Reductions to Relative Gravity Measurements. A Case Study Through the Establishment of the New Local Gravity Net in the Province of Valencia (Spain). Survey Review. 43(319):16-29. doi:10.1179/003962610X12747001420825S162943319Boedecker, G., & Richter, B. (1981). The new gravity base net 1976 of the Federal Republic of Germany (DSGN 76). Bulletin GĂ©odĂ©sique, 55(3), 250-266. doi:10.1007/bf02530865Cartwright, D. E., & Tayler, R. J. (2007). New Computations of the Tide-generating Potential. Geophysical Journal of the Royal Astronomical Society, 23(1), 45-73. doi:10.1111/j.1365-246x.1971.tb01803.xCharles, K. and Hipkin, R.G. 1994. British precise gravity net 1993. Joint symposium of the International Gravity Comission and the International Geoid Comission, Symposium 113: 39–45, Graz, Austria. Ed. Springer-Verlag.Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3), 761. doi:10.1029/rg010i003p00761Jentzsch, G. (s. f.). Earth tides and ocean tidal loading. Lecture Notes in Earth Sciences, 145-171. doi:10.1007/bfb0011461Torge, W. 1989. Gravimetry. Ed. Walter de Gruyter, Berlin-New York. 465 pages.Wahr, J. M. (1985). Deformation induced by polar motion. Journal of Geophysical Research, 90(B11), 9363. doi:10.1029/jb090ib11p09363Wenzel, G. 1998. Format and structure for the exchange of high precision tidal data, http://www.ife.uni-hannover.de/∌Wenzel/format/format.html, acceded on February 1999

    Height Systems and Vertical Datums: a Review in the Australian Context

    Get PDF
    This paper reviews (without equations) the various definitions of height systems and vertical geodetic datum surfaces, together with their practical realisation for users in Australia. Excluding geopotential numbers, a height system is a one-dimensional coordinate system used to express the metric distance (height) of a point from some reference surface. Its definition varies according to the reference surface chosen and the path along which the height is measured. A vertical geodetic datum is the practical realisation of a height system and its reference surface for users, nominally tied to mean sea level. In Australia, the normal-orthometric height system is used, which is embedded in the Australian Height Datum (AHD). The AHD was realised by the adjustment of ~195,000 km of spirit-levelling observations fixed to limited-term observations of mean sea level at multiple tide-gauges. The paper ends by giving some explanation of the problems with the AHD and of the differences between the AHD and the national geoid model, pointing out that it is preferable to recompute the AHD

    Ellipsoidal area mean gravity anomalies - precise computation of gravity anomaly reference fields for remove-compute-restore geoid determination

    Get PDF
    Gravity anomaly reference fields, required e.g. in remove-compute-restore (RCR) geoid computation, are obtained from global geopotential models (GGM) through harmonic synthesis. Usually, the gravity anomalies are computed as point values or area mean values in spherical approximation, or point values in ellipsoidal approximation. The present study proposes a method for computation of area mean gravity anomalies in ellipsoidal approximation ('ellipsoidal area means') by applying a simple ellipsoidal correction to area means in spherical approximation. Ellipsoidal area means offer better consistency with GGM quasi/geoid heights. The method is numerically validated with ellipsoidal area mean gravity derived from very fine grids of gravity point values in ellipsoidal approximation. Signal strengths of (i) the ellipsoidal effect (i.e., difference ellipsoidal vs. spherical approximation), (ii) the area mean effect (i.e., difference area mean vs. point gravity) and (iii) the ellipsoidal area mean effect (i.e., differences between ellipsoidal area means and point gravity in spherical approximation) are investigated in test areas in New Zealand and the Himalaya mountains. The impact of both the area mean and the ellipsoidal effect on quasigeoid heights is in the order of several centimetres. The proposed new gravity data type not only allows more accurate RCR-based geoid computation, but may also be of some value for the GGM validation using terrestrial gravity anomalies that are available as area mean values

    Indirect evaluation of Mars Gravity Model 2011 using a replication experiment on Earth

    Get PDF
    Curtin University’s Mars Gravity Model 2011 (MGM2011) is a high-resolution composite set of gravity field functionals that uses topography-implied gravity effects at medium- and short-scales (~125 km to ~3 km) to augment the space-collected MRO110B2 gravity model. Ground-truth gravity observations that could be used for direct validation of MGM2011 are not available on Mars’s surface. To indirectly evaluate MGM2011 and its modelling principles, an as-close-as-possible replication of the MGM2011 modelling approach was performed on Earth as the planetary body with most detailed gravity field knowledge available. Comparisons among six ground-truth data sets (gravity disturbances, quasigeoid undulations and vertical deflections) and the MGM2011-replication over Europe and North America show unanimously that topography-implied gravity information improves upon space-collected gravity models over areas with rugged terrain. The improvements are ~55% and ~67% for gravity disturbances, ~12% and ~47% for quasigeoid undulations, and ~30% to ~50% for vertical deflections. Given that the correlation between space-collected gravity and topography is higher for Mars than Earth at spatial scales of a few 100 km, topography-implied gravity effects are more dominant on Mars. It is therefore reasonable to infer that the MGM2011 modelling approach is suitable, offering an improvement over space-collected Martian gravity field models

    Comparação da eficiĂȘncia relativa de dois apetrechos de coleta de peixes em praias no baixo rio Purus, Amazonas, Brasil

    Get PDF
    Apesar das praias serem consideradas um dos sete mais importantes habitats aquĂĄticos da AmazĂŽnia, poucos trabalhos foram realizados quanto ao levantamento de sua ictiofauna, principalmente quando utilizados diferentes apetrechos de coleta. Este trabalho teve como objetivo comparar a eficiĂȘncia relativa de dois apetrechos, rede de cerco e malhadeira, ambos utilizados de forma ativa (arrasto), em trĂȘs praias localizadas no baixo rio Purus. A rede de cerco apresentou maior nĂșmero de espĂ©cies e indivĂ­duos capturados, no entanto, a malhadeira apresentou maiores valores de biomassa total, representada principalmente por Siluriformes. A baixa similaridade da fauna de peixes capturada (38%) foi devido Ă  exclusividade de espĂ©cies coletadas com cada apetrecho, 41 com rede de cerco e 32 com malhadeira. O presente trabalho mostra a importĂąncia de se utilizar diferentes apetrechos de coleta como forma de diminuir a seletividade inerente de cada um desses aparelhos, melhorando a efetividade de amostragens em ambientes pouco estudados

    Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks

    Get PDF
    Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity

    The computation of the geoid model in the state of SĂŁo Paulo using two methodologies and GOCE models

    Get PDF
    The purpose of this manuscript is to compute and to evaluate the geoid model in the State of SĂŁo Paulo from two methodologies (Stokes' integral through the Fast Fourier Transform - FFT and Least Squares Collocation - LSC). Another objective of this study is to verify the potentiality of GOCE-based. A special attention is given to GOCE mission. The theory related to Stokes' integral and Least Squares Collocation is also discussed in this work. The spectral decomposition was employed in the geoid models computation and the long wavelength component was represented by EGM2008 up to degree and order 150 and 360 and GOCE-based models up to 150. The models were compared in terms of geoid height residual and absolute and relative comparisons from GPS/leveling and the results show consistency between them. In addition, a comparison in the mountain regions was carried out to verify the methodologies behavior in this area; the results showed that LSC is less consistent than FFT

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    • 

    corecore