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ABSTRACT 

Gravity-based heights require gravity values at levelled benchmarks (BMs), which 

sometimes have to be predicted from surrounding observations.  We use the Earth 

Gravitational Model (EGM2008) and the Australian National Gravity Database 

(ANGD) as examples of model and terrestrial observed data respectively to predict 

gravity at Australian national levelling network (ANLN) BMs.  The aim is to quantify 

errors that may propagate into the predicted BM gravity values and then into 

gravimetric height corrections (HCs).  Our results indicate that an approximate ±1 arc-

minute horizontal position error of the BMs causes maximum errors in EGM2008 BM 

gravity of ~ 22 mGal (~55 mm in the HC at ~2200 m elevation) and ~18 mGal for 

ANGD BM gravity because the values are not computed at the true location of the BM.  

We use RTM (residual terrain modelling) techniques to show that ~50% of EGM2008 

BM gravity error in a moderately mountainous region can be accounted for by signal 

omission.  Non-representative sampling of ANGD gravity in this region may cause 

errors of up to 50 mGals (~120 mm for the Helmert orthometric correction at ~2200 m 

elevation).  For modelled gravity at BMs to be viable, levelling networks need 

horizontal BM positions accurate to a few metres, while RTM techniques can be used to 

reduce signal omission error.  Unrepresentative gravity sampling in mountains can be 

remedied by denser and more representative re-surveys, and/or gravity can be forward 

modelled into regions of sparser gravity. 
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1. INTRODUCTION 

Physically meaningful heights are governed by the difference between gravity 

potential at the point of interest ( ௉ܹ) and gravity potential on the geoid ( ଴ܹ), scaled to 

dimensions of length by some value with dimensions of acceleration.  Ideally, this 

should be the integral mean value of gravity along the plumblines, but this is very 

difficult to realise in practice, so various different approximations, including constant 

values, have been used (summarised below).   

Levelling networks provide the geometric height difference (∆݊) relative to the local 

equipotential surface, but these need to be converted into potential differences that 

account for the non-parallelism of the equipotential surfaces and to ensure holonomity 

(e.g., Sansó and Vaníček, 2006).  Gravity potential cannot be measured directly, so 

surface gravity observations (݃௢௕௦) are combined with levelling to obtain (e.g., 

Heiskanen and Moritz, 1967, p. 162) 

଴ܹ െ ௉ܹ ൌ ܥ ൌ ׬ ݃ dn௉଴        (1) 

where ܥ is the geopotential number, which is independent of the levelling route taken 

between the geoid and ܲ.   

Orthometric (ܪை), dynamic (ܪ஽) and normal (ܪே) heights are all based on ܥ 

and thus require ݃௢௕௦ in their realisation (see Heiskanen and Moritz, 1967, Chapter 4; 

Jekeli, 2000, Molodensky et al., 1962).  In contrast, normal-orthometric heights (ܪேିை; 

e.g., Bomford, 1971, p. 230) use only normal gravity (ߛ), while ܪே use ߛ and ݃௢௕௦ (e.g., 

Heiskanen and Moritz 1967, p. 170).  ܪை and ܪ஽ are both measured relative to the 

geoid; ܪே is measured relative to the quasigeoid, which is not an equipotential surface; ܪேିை is measured relative to an indeterminate non-equipotential surface (Filmer et al., 

   .஽ are not suitable for national vertical datums, so are not discussed furtherܪ  .(2010
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All height systems are practically implemented through the application of height 

corrections (HCs) to ∆݊ between benchmarks (BMs) in the levelling network, which is 

then typically least-squares adjusted to realise heights at BMs.  Alternatively, the ܥ-

based method can be used (e.g., Marti and Schlatter, 2002).  Either method realises 

heights at BMs in one of the aforementioned height systems, which is fundamental for 

any physically meaningful vertical datum.  Both methods require a gravity value at each 

BM (݃஻ெ), but for this study, we use the HC method.  For HC formulas, the reader is 

referred to, e.g., Heiskanen and Moritz (1967, Chapter 4). 

Because many national vertical datums were realised when insufficient gravity 

observations were available for gravimetric HCs to be applied (e.g., Roelse et al., 1971; 

Christie, 1994; de Freitas et al., 2002), normal gravity was used to compute normal-

orthometric corrections (ܱܰܥs) to realise ܪேିை as an approximation of ܪை.  

Differences between ܪேିை and ܪை or ܪே can be at the decimetre level (Filmer et al., 

2010) so redefinition of older levelling-based vertical datums using ܪேିை should 

consider the implementation of a gravimetric height system; i.e., ܪை or ܪே.  This can be 

difficult if ݃௢௕௦ are not taken directly on BMs, making it necessary to predict the 

required gravity values.  

Our motivation is to assess the suitability of two possible methods for predicting ݃஻ெ (Section 2.2) for gravimetric height systems to be used in redefined vertical 

datums.  We use modelled gravity from Earth Gravitational Model 2008 (EGM2008; 

Pavlis et al., 2012) and terrestrial ݃௢௕௦  from the 2007 release of the Australian National 

Gravity Database (ANGD).  We identify and empirically quantify ݃஻ெ errors from the 

prediction methods and gravity sources used, and relate their effect on HCs so that these 

problems can be considered prior to any redefinition of a vertical datum.  Throughout, 
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we use ݃஻ெ to denote all methods of interpolation/computation used to predict gravity 

at a BM.   

A particular problem that we have encountered is the effect of uncertainty in 

horizontal BM positions at which the gravity predictions are to be made and their effect 

on HCs computed from ݃஻ெ.  This does not appear to have been addressed previously, 

although Tscherning (1980) points out the need for accurate horizontal BM positions.  

In addition, we consider errors at ݃஻ெ from barometric height errors at terrestrial ݃௢௕௦ 

(e.g., Bellamy and Lodwick, 1968), the effect of inconsistent datums (e.g., Featherstone, 

1995), and signal omission error when using EGM2008-modelled gravity (e.g., Hirt et 

al., 2010a). 

Various methods of gravity prediction at BMs have been presented by others, 

including least-squares collocation (Tscherning, 1980), least-squares surface fitting, and 

weighted means (e.g., Kassim, 1980).  The US National Geodetic Survey provides 

surface gravity predictions (http://www.ngs.noaa.gov/TOOLS/Gravity/gravcon.html) 

using the multiquadratic-biharmonic method of Hardy and Nelson (1986), although 

Jekeli (1994) raises doubts over the legitimacy of this method.  These methods all use 

terrestrial gravity data to predict ݃஻ெ, with various levels of precision that are 

dependent on the local terrain, type of gravity anomaly, but particularly on the quality of 

the source data.  Our primary purpose is to show that the accuracy of ݃஻ெ is limited by 

BM coordinate uncertainty, the resolution of modelled gravity, and the spatial sampling 

of ݃௢௕௦.  No comparison is made among the [very many] options for interpolation and 

prediction.  

The state of terrestrial gravity and levelling databases is a contributing factor in 

the accurate prediction of ݃஻ெ.  Since many gravity surveys are not undertaken solely 
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for computing HCs to differential levelling observations, but for national mapping 

programs, resource exploration and military purposes, the spatial density of the gravity 

observations are often unsuitable for predicting ݃஻ெ (e.g., Mitchell, 1973; de Freitas et 

al., 2002).  The ANGD has been developed primarily for resource exploration, and 

geodetic uses have been generally focussed on regional quasi/geoid computation (e.g., 

Featherstone et al., 2011).   

Satellite gravity missions have allowed the long-wavelength gravity field to be 

realised more accurately than before, but terrestrial gravity is still required to provide 

the high-frequency contributions.  Global gravitational models, such as EGM2008, have 

been developed from a combination of digital elevation, GRACE (Tapley et al., 2004), 

satellite altimetry and terrestrial gravity data (Pavlis et al., 2012), and can be used to 

derive surface gravity values at BMs (e.g., Filmer et al., 2010).  Thus, modelled gravity 

can be used for HCs in place of the traditional terrestrial gravity database, but possible 

errors do need to be considered, as is the case here. 

 

2. DATA USED AND GRAVITY PREDICTION METHOD 

2.1 Data 

The ANLN (provided by Geoscience Australia; G. Johnston, 2007, pers. comm.) is 

Australia’s official national levelling network, containing 87,951 BMs in the 2007 

version.  ANLN data used for this study comprise Australian Height Datum (AHD; 

Roelse et al., 1971) ܪேିை and the horizontal positions of the BMs (latitude; Ԅ஻ெ and 

longitude; λ஻ெ, referred to as Ω஻ெ஺ே௅ே).  A truncated version of the Rapp (1961) ܱܰܥ 

using Geodetic Reference System 1967 (GRS67; IAG, 1971) parameters was applied to 

the ANLN levelling sections prior to the national adjustment.  The effects of truncating 
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the Rapp (1961) formula and using GRS67 (rather than GRS80) parameters were shown 

in Filmer et al., (2010) to be negligible.  The ANLN consists of mostly pre-1971 

levelling, which was used to realise the AHD in 1971, but has received some updates 

over the years (e.g., Wellman and Tracey, 1987; Morgan, 1992).  Filmer and 

Featherstone (2009) discuss the current status of and problems in the ANLN. 

The tide-free release of EGM2008 was used for modelled ݃஻ெ.  EGM2008 used 

905,483 Australian land gravity observations (Factor, 2008, pers. comm.) of which 

156,269 are not held in the ANGD and located mostly around Darwin in northern 

Australia.  The ANGD has been compiled over the past ~60 years (e.g., Murray, 1997).  

The 2007 release (Tracey et al., 2007) is used for this study because it contains ANLN 

BM names that are not available in subsequent releases, but are necessary to identify ݃௢௕௦ co-located with ANLN BMs (݃௢௕௦஻ெ).  9,527 ݃௢௕௦஻ெ  (out of 87,951) were identified in 

the 2007 release of the ANGD (Filmer et al., 2010) and are used as control data for 

some tests in this paper. 

The ANGD 2007 release contains 1,246,613 land-based and marine ݃௢௕௦ which 

are tied to the Australian Absolute Gravity Datum 2007 (AAGD07; Tracey et al., 2007), 

which is 0.078 mGal less than IGSN71 (Morelli et al., 1974).  

The version 4 digital elevation model (DEM) of Jarvis et al., (2008), derived 

from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007) is used to 

approximate EGM2008 signal omission error in south east Australia using the residual 

terrain model (RTM) technique (Forsberg, 1984; see Section 3.4).  Following Hirt 

(2010), RTM data are constructed as the difference between the version-4 SRTM 

elevation data set and the high-degree spherical harmonic DTM2006.0 (Pavlis et al., 



7 
 

2007) topography expanded to degree 2160, which is compatible with EGM2008 to 

degree 2190 (cf. Hirt et al., 2010b).  

 

2.2 Prediction and interpolation of ࡹ࡮ࢍ 

The process used to compute EGM2008-predicted ݃஻ெ (referred to as ݃஻ொீெ) 

using the EGM2008 gravity disturbance (݃ߜாீெ) and GRS80 (Moritz, 1980) ߛ is  ݃஻ொீெ ൌ ஻ொீெ݃ߜ ൅  ஻ெ       (2)ߛ

where ݃ߜ஻ொீெ and ߛ஻ெ are ݃ߜாீெ and GRS80 ߛ computed at the BM respectively. 

These values were all computed using derived ellipsoid heights (accurate to ~1 m or 

better) from the AHD ܪேିை (available at the ANLN BM) and the EGM2008 height 

anomaly.  Full details of this computation (Eq. (2)) can be found in Section 3.1 of 

Filmer et al. (2010), so will not be repeated here.  One alternative (and equivalent) 

method of obtaining ݃஻ொீெ from EGM2008 is to compute the gravitational potential via 

the gradient of the potential and then add the centrifugal component. This could be done 

using e.g., harmonic_synth.f (Holmes and Pavlis, 2008), but would require three runs 

just to get the gradients, so that this method provides no computational advantage. ݃஻ெ predicted from the ANGD (referred to as ݃஻ெ஺ேீ஽) is computed in several 

steps.  Firstly, simple planar Bouguer gravity anomalies (Δ݃ௌ௉஻ሻ are computed at 

ANGD ݃௢௕௦ as Δ݃ௌ௉஻ ൌ ݃௢௕௦ െ ஻௉݃ߜ ൅ ஺஼݃ߜ ൅ ிଶ݃ߜ െ  (3)     ߛ

where ݃ߜ஻௉ (݃ߜ஻௉ ൌ  is the universal ܩ ,ை) is the Bouguer plate (BP) attractionܪܩߩߨ2

gravitational constant (6.67259 ൈ 10-11 m3 kg-1 s-2 (Cohen and Taylor 1995) used here, 

but changing estimates of ܩ are insignificant in relation to the constant density 

approximation), ߩ is the mass-density of the BP (usually 2670 kg mିଷ, taken as a 
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constant), ݃ߜ஺஼ is the atmospheric correction (8.71-1.03 x 10-3ܪை μm s-2; e.g., 

Featherstone and Dentith, 1997) and ݃ߜிଶ the second-order free air correction (see 

Hackney and Featherstone, 2006).  As an approximation of ܪை, ANGD ݃௢௕௦ use  

heights that are mostly observed using barometers at ݃௢௕௦ and are only accurate to ~±5 

m (Fraser et al., 1976; see Section 3.1 in this paper).  Δ݃ௌ௉஻ are used because they are 

suitable for gridding in Australia (Goos et al., 2003), but this may not be the case in 

more topographically rugged areas (e.g. Janák and Vaníček, 2005).  Zhang and 

Featherstone (2004) showed that there was no advantage in using isostatic gravity 

anomalies in place of Δ݃ௌ௉஻ over Australia.  Δ݃ௌ௉஻ were then interpolated onto a 2 arc-minute grid using the tensioned spline 

algorithm of Smith and Wessel (1990), using T = 0.25.  The grid resolution of 2 arc-

minutes (~4 km) was selected on the basis that the distance between BMs is typically ~5 

km and the observational spacings of ANGD ݃௢௕௦ is ~11 km (~7 km in South Australia) 

(Fraser et al., 1976; Murray, 1997).  Angus-Leppan (1982) summarises that the 

spacings of ݃௢௕௦ to predict ݃஻ெ for HCs should be <2 km (at BMs along the levelling; 

cf. Papp et al., 2009), albeit to keep the effect of the HC error on the levelling to 

<0.1√݀ mm (݀ is the distance in km along the levelling route) as suggested by 

Ramsayer (1965).  Our grid and the original ANGD resolution are larger than this (and 

we do generally not have ݃௢௕௦ along levelling lines), and although many regions of the 

ANGD have now been infilled by denser gravity surveys, the spacing of ݃௢௕௦ in some 

regions remains an obstacle.  Notwithstanding, we consider the requirement for ݃஻ெ 

error (݃ߝ஻ெ) to effect HC error by <0.1√݀ mm to be unrealistic in Australia, where the 

ANLN is a mostly third-order network with a misclosure tolerance of 12√݀ mm. 
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The gridded Δ݃ௌ௉஻ were then bi-cubically interpolated from the 2 arc-minute 

grid to ANLN BMs.  The ‘reverse’ BP reduction at the ANLN BM location ݃஻ெ஺ேீ஽ ൌ Δ݃ௌ௉஻ ൅ ߛ െ ிଶ݃ߜ ൅ ஻௉݃ߜ െ  ஺஼    (4)݃ߜ

was used to realise ݃஻ெ஺ேீ஽. The AHD ܪேିை available at the BM (accurate to <1 m) are 

used to compute the values in Eq. (4) 

The use of double interpolation, although not ideal, is an enforced practicality 

because our software requires the input data to be gridded.  Barlow (1977) suggests an 

interpolation error of ~2 mGal for ݃௢௕௦ spaced at 11 km, so that simple linear 

propagation gives a double interpolation error of ~2.8 mGal.  A validation of ݃஻ெ஺ேீ஽ 

using the 9,527 ݃௢௕௦஻ெ  gave an RMS for ݃஻ெ஺ேீ஽ minus ݃௢௕௦஻ெ  (cf. Eq.(10)) of 2.1 mGal 

(Filmer, 2010, Chapter 6).  This comprises all error components (see Section 3) which 

would be expected to ‘swamp’ the interpolation error, suggesting that actual 

interpolation error is somewhat less than 2.8 mGal.  Thus, we assume that the effects of 

the second interpolation only marginally add to the interpolation error compared to if 

direct interpolation had been used. 

 

3. ERRORS IN ݃஻ொீெ AND ݃஻ெ஺ேீ஽ 

There are numerous ways that errors can propagate into ݃஻ொீெ  and ݃஻ெ஺ேீ஽.  We 

first need to establish a threshold below which we consider ݃ߝ஻ெ to be negligible.  

Filmer and Featherstone (2011) conducted an error analysis to determine the sensitivity 

of the Helmert orthometric correction (ܥܱܪ; Helmert, 1890) and the normal correction 

 to input values, including ݃஻ெ, using test areas in Australia.  We draw upon these (ܥܰ)

results throughout this paper to quantify the height (or HC) error resulting from ݃ߝ஻ெ. 

Thus, following Filmer and Featherstone (2011), ݃ߝ஻ெ of ~3 mGal will cause an error 
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in the ܥܱܪ;  of ~10 mm at the highest point in Australia (Mt Kosciosko; 2228 m), ~5 

mm at 1,000 m, and decreasing below this elevation.  ݃ߝ஻ெ of 3 mGal will affect the ܰܥ by <1 mm, because it is much less sensitive to ݃ߝ஻ெ than the ܥܱܪ (Filmer and 

Featherstone, 2011).  

Because most ANLN BMs are <1,000 m in AHD height, we consider ݃ߝ஻ெ <3 

mGal to be acceptable and apply this threshold throughout.  It is difficult to determine a 

realistic ‘tolerance’ for ݃ߝ஻ெ, because the significance of the resultant HC error is 

dependent on the length of the levelling section between BMs to which it is applied 

(e.g., Ramsayer, 1965).  However, we consider <3 mGal, which limits maximum ܥܱܪ 

error in Australia to <10 mm, to be a pragmatic threshold when the quality of Australian 

levelling is considered (cf. Filmer and Featherstone, 2009).  In countries with higher 

mountains and a larger proportion of their BMs at higher elevations than in Australia, 

this 3 mGal threshold will need to be lowered accordingly, although this is dependent 

on whether the ܥܱܪ or ܰܥ is to be used. ݃ߝ஻ெ can result from the original data, or the methods used to compute ݃஻ெ 

from the source data.  We discuss some of the possible errors in the original data used 

here (e.g., barometric height errors at terrestrial ݃௢௕௦  and omission errors in 

EGM2008), but our focus is on how these data errors propagate through the prediction 

methods and into ݃஻ொீெ  and ݃஻ெ஺ேீ஽, and whether ݃ߝ஻ெ from these errors are >3 mGal 

and thus cause potentially large errors in gravimetric HCs. 

 

3.1 Barometer height errors at terrestrial gravity observations 

Most ANGD ݃௢௕௦ heights were determined by barometer (ܪ௕; Fraser et al., 1976; 

Barlow, 1977; Bellamy and Lodwick, 1968; Murray, 1997), unless the gravity 
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observation was taken directly on a BM with a levelled AHD height (as recommended 

by Angus-Leppan, 1982).  ܪ௕ at ANGD ݃௢௕௦ are estimated to have a relative accuracy 

of ±5 m within each survey (conducted by helicopter) but this can increase to ±10 m for 

ties among separate helicopter surveys (Fraser et al., 1976; Barlow, 1977).  Bellamy 

and Lodwick (1968) suggest that this may be occasionally exceeded in mountainous 

terrain, but testing ݃஻ெ஺ேீ஽ against some ݃௢௕௦஻ெ  did not indicate larger errors in 

mountainous regions (Filmer 2010, Chapter 6). 

The significance of ܪ௕ errors (ܪߜ௕) at ݃௢௕௦ on ݃஻ெ஺ேீ஽ is determined by their 

effect on the Δ݃ௌ௉஻ (Section 2.2).  Barlow (1977) suggests that Δ݃ௌ௉஻ errors (ߝΔ݃ௌ௉஻) 

resulting from ܪߜ௕ are likely to be between 1.5 mGal and 2.5 mGal (cf. Fraser et al., 

1976), including interpolation errors, although this is dependent on the spacing between 

observations, horizontal gravity gradients and ruggedness of the terrain.  This is just 

below our ‘threshold’ of 3 mGal; so, despite ܪߜ௕ making an error contribution to the 

ANGD, their propagation into ݃஻ெ஺ேீ஽ and the resultant gravimetric HCs is not >10mm.  

In an extreme example, ܪߜ௕ of ~15 m would be required to cause εΔ݃ௌ௉஻ (and hence ݃ߝ஻ெ) of 3 mGal (using 0.1967 mGal m-1; Heiskanen and Moritz, 1967, p. 131). Here, 

we clarify that for terrestrial ݃௢௕௦, Eq. (3) uses the ANGD height at ݃௢௕௦, which are 

mostly ܪ௕ and thus contain errors of ~±5 m.  In the ‘reverse’ Δ݃ௌ௉஻ Eq. (4) uses AHD ܪேିை at the BM which is accurate to <1m (mostly <0.5 m). 

The effect of ܪߜ௕ on ݃஻ொீெ is less direct, but quantification is problematic 

because ܪߜ௕ at ݃௢௕௦ affect the mean gravity anomalies used in EGM2008 (see below), 

but all values in Eq. (2), including ݃ߜ஻ொீெ are computed directly at the ANLN BM using 

AHD ܪேିை. Thus, simply estimating the effect of ܪߜ௕ at a discrete point is not 

comparable, as follows.  Pavlis et al. (2012) describe how the LSC algorithm used to 
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estimate each 5 arc-minute area mean gravity anomaly in the EGM2008 computation 

use overlapping point value data within a 1 degree by 1 degree cell (~110 km by 110 

km). This is likely to ‘smooth’ any effects of large ܪߜ௕ within this large area, so that 

any ܪߜ௕ propagating into the EGM2008 coefficients, then ݃ߜ஻ொீெ, and finally into ݃஻ொீெ 

will be small.  Pavlis et al. (2012) (their Fig.12a) indicate a commission error implied 

height anomaly error of 50-100 mm in EGM2008 over Australia.  A 100 mm error in 

height anomaly is equivalent to 0.03 mGal in free-air which maps approximately into ݃ߜ஻ொீெ (cf. Heiskanen and Moritz, 1967, p.85) (and hence ݃஻ொீெ), suggesting that ܪߜ௕ 

are negligible for ݃஻ொீெ when used to compute gravimetric HCs. 

 

3.2 Inconsistent horizontal geodetic datums 

Uncertainty in Ω஻ெ஺ே௅ே can propagate errors into ݃஻ொீெ through the computation of ݃ߜ஻ொீெ, but also into ݃஻ெ஺ேீ஽ because Δ݃ௌ௉஻ are interpolated from the location of the 

gravity station (Ω௚೚್ೞ஺ேீ஽) to Ω஻ெ஺ே௅ே.  This causes ݃஻ெ to be predicted at a different 

location to the actual position of the BM (cf. Heck, 1990; Featherstone, 1995).  As with 

many other terrestrial datasets (e.g., Hinze et al., 2005), the ANLN and ANGD have 

been compiled over long time periods, during which Australia has changed from a non-

geocentric geodetic datum (Australian Geodetic Datum 1966; AGD66) to a geocentric 

geodetic datum (Geocentric Datum of Australia 1994; GDA94).  This is likely to be a 

problem in other countries, which may be compounded by a lack of adequate metadata. 

It is assumed that  Ω஻ெ஺ே௅ே are in AGD66 (G. Holloway, 2009, pers. comm.), 

although there may be some doubt as to BMs levelled prior to 1966, when AGD66 was 

realised, as the ANLN includes levelling dating back to the 1950s (Roelse et al., 1975).  

However, EGM2008 is geocentric, causing a difference between (߶, ߣ) where ݃ߜாீெ is 
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computed and Ω஻ெ஺ே௅ே where ݃஻ொீெ is realised. Ω௚೚್ೞ஺ேீ஽ have been transformed to GDA94 

(although some older positions may be unreliable), so a similar discrepancy exists for ݃஻ெ஺ேீ஽.  Possible errors in ݃ߜாீெ resulting from using Ω஻ெ஺ே௅ே, rather than transformed 

GDA94 Ω஻ெ஺ே௅ே (Ω஻ெீ஽஺) are estimated, as follows. 

Grid transformation software GDAit (Department of Geomatics, University of 

Melbourne; http://www.geom.unimelb.edu.au/gda94/) was used to transform all 87,591 Ω஻ெ஺ே௅ே to Ω஻ெீ஽஺.  ݃ߜாீெ were computed at Ω஻ெ஺ே௅ே (݃ߜ஻ொீெ) and Ω஻ெீ஽஺  (ீ݃ߜ஽஺ாீெ) for the 

same BM (cf. Featherstone, 1995), so that   ݃ߜߝ஻ெିீ஽஺ ൌ ஻ொீெ݃ߜ െ  ஽஺ாீெ       (5)ீ݃ߜ

where ݃ߜߝ஻ெିீ஽஺ is the ݃ߜ஻ொீெ error caused by horizontal datum inconsistency (Fig. 

1(a)). 

 

 

 

Figure 1: (a) Differences between ݃ߜாீெ at Ω஻ெ஺ே௅ே and Ω஻ெீ஽஺ (maximum 2.1 mGal, 

minimum -2.33 mGal, RMS ±0.2 mGal), and (b) differences between ANGD Δ݃ௌ௉஻ at Ω஻ெ஺ே௅ே and Ω஻ெீ஽஺ (maximum 1.5 mGal, minimum -2.2 mGal, RMS ±0.2 mGal). 

Lambert projection, units in mGal. 



14 
 

A similar procedure was conducted for the ANGD, where Δ݃ௌ௉஻ were predicted 

at Ω஻ெ஺ே௅ே and at Ω஻ெீ஽஺  (Δ݃ௌ௉஻ீ஽஺) so that ߝΔ݃஻ெିீ஽஺ ൌ Δ݃ௌ௉஻ െ Δ݃ௌ௉஻ீ஽஺       (6) 

where ߝΔ݃஻ெିீ஽஺ is the Δ݃ௌ௉஻ error at the BM (Fig. 1(b)).  ݃ߜߝ஻ெିீ஽஺ and ߝΔ݃஻ெିீ஽஺ maxima are 2.3 and 2.2 mGal in magnitude respectively (RMS are both 

~±0.2 mGal) but <3 mGal so that the effect on gravimetric HCs is small.  It appears 

that, although ݃ߜߝ஻ெିீ஽஺ and ߝΔ݃஻ெିீ஽஺ statistics are similar, there is a difference 

between their spatial distributions.  ݃ߜாீெ is more sensitive to inconsistent horizontal 

datums at high elevations along the east coast (e.g., ~37°S, 148°E; Fig. 1(a)) because ݃ߜாீெ are rougher in this region, but this is not the case for ANGD Δ݃ௌ௉஻ (Fig. 1 (b)), 

where Δ݃ௌ௉஻ are smoother (cf. Goos et al., 2003, Zhang and Featherstone, 2004). 

 

3.3 BM positional uncertainty 

Although the systematic effect of inconsistent geodetic datums in Australia propagating 

into predicted ݃஻ெ appears to have a small effect on gravimetric HCs, BM locations 

also contain other uncertainties.  Ω஻ெ஺ே௅ே were scaled from 1:250,000 topographic maps 

to the nearest arc-minute (Roelse et al., 1971), which causes an uncertainty of ±30 arc-

seconds (~900 m) in both Ԅ஻ெ and λ஻ெ, which gives a maximum error of ~1270 m.  

Approximate plotting on maps and other approximations/errors may result in the real 

BM positional uncertainty being larger than this, perhaps with a maximum error of 1 

arc-minute or ~1.8 km.  This is not unrealistic because Filmer (2010, Chapter 6) found 

extreme cases of differences between Ω௚೚್ೞ஺ேீ஽ and Ω஻ெ஺ே௅ே reaching ~2.5 km.   

 

 



15 
 

3.3.1 Effect on normal gravity Ԅ஻ெ is used to compute ߛ on the GRS80 ellipsoid which is required for ݃஻ொீெ (Eq.(2)) 

and ANGD Δ݃ௌ௉஻ (Eq.(3)).  Hence, an error in Ԅ஻ெ (ߜ߶஻ெ) will propagate into ߛ and 

thus ݃஻ொீெ and ݃஻ெ஺ேீ஽ (cf. Heck, 1990; Featherstone, 1995).  

We re-computed ߛ using a simulated 1 arc-minute maximum error in ߶஻ெ for 

the 87,951 ANLN BMs.  The largest difference was 1.51 mGal, which when propagated 

into ݃஻ொீெ or ݃஻ெ஺ேீ஽ will have a negligible effect on gravimetric HCs. 

 

3.3.2 Effect on ݃஻ொீெ  and ݃஻ெ஺ேீ஽ 

An uncertainty in Ω஻ெ஺ே௅ே causes ݃஻ொீெ and ݃஻ெ஺ேீ஽ to be computed at a different location 

to the true position of the BM.   

A subset of 2,453 ANLN BMs in the Australian Alps was used as a test area 

(Fig. 2) where maximum errors in ݃ߜ஻ொீெ are located in this moderately rugged terrain 

(cf. Claessens et al., 2009; Filmer et al., 2010).  ݃ߜாீெ was synthesised to degree 2190 

in 1 arc-minute NE, SE, SW, and NW directions from the given Ω஻ெ஺ே௅ே  in the test area 

ߜ) ଵ݃ாீெ), and the maximum-magnitude value taken as a worst-case scenario.  The 

simulated error (ߜߝ ଵ݃ாீெ) for ݃ߜ஻ொீெis  ߜߝ ଵ݃ாீெ ൌ ஻ொீெ݃ߜ  െ ߜ ଵ݃ாீெ        (7) 

The simulation was repeated for ANGD Δ݃ௌ௉஻ so that εΔ ଵ݃ ൌ Δ݃ௌ௉஻ െ Δ ଵ݃         (8) 

where εΔ ଵ݃ is the error resulting from computing Δ݃ௌ௉஻ 1 arc-minute NE, SE, SW and 

NW from Ω஻ெ஺ே௅ே (Δ ଵ݃). Maximum ߜߝ ଵ݃ாீெ was 21.9 mGal, which would map directly 

into ݃஻ொீெ, which, based on the sensitivity analysis of Filmer and Featherstone (2011), 
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would cause a ܥܱܪ error of ~55 mm at ~2,200 m elevation, while maximum εΔ ଵ݃ was 

4.7 mGal, and would cause an ~15 mm error in the ܥܱܪ at ~2,200 m. 

The use of the four different directions is a simplistic method, but is only 

designed to represent the maximum error that could be expected from the Ω஻ெ஺ே௅ே 1 arc-

minute uncertainty.  More complex simulations, e.g., Monte Carlo, are not really 

worthwhile as we only have very crude error estimates of the BM locations.  

To test the component of ݃ߝ஻ெ that could be attributable to Ω஻ெ஺ே௅ே uncertainty, 

an estimate of ݃ߝ஻ெ over Australia was computed (Filmer et al., 2010; Filmer, 2010, 

Chapter 6) according to ݃ߝ஻ொீெ ൌ ݃஻ொீெ െ ݃௢௕௦஻ெ ஻ெ஺ேீ஽݃ߝ (9)         ൌ ݃஻ெ஺ேீ஽ െ ݃௢௕௦஻ெ         (10) 

where ݃ߝ஻ொீெ and ݃ߝ஻ெ஺ேீ஽ are the ݃஻ெ errors for ݃஻ொீெ and ݃஻ெ஺ேீ஽ respectively.  A 

comparison of the maximum magnitudes show that ߜߝ ଵ݃ாீெ (21.9 mGal) is ~39% of ݃ߝ஻ொீெ (56.8 mGal).  By comparison, εΔ ଵ݃ (4.7 mGal) is ~20% of ݃ߝ஻ெ஺ேீ஽ (24.2 mGal).  

This suggests that ~40% of the largest ݃ߝ஻ொீெ identified by Filmer et al. (2010) could be 

attributable to uncertainty in Ω஻ெ஺ே௅ே.  Because ݃ߝ஻ெ஺ேீ஽ are smaller in this mountainous 

region than ݃ߝ஻ொீெ (Filmer, 2010, Chapter 6), and Δ݃ௌ௉஻ are rougher in central and 

western Australia (e.g., Zhang and Featherstone, 2004), εΔ ଵ݃ were computed for all 

Australia.  The maximum magnitude for εΔ ଵ݃ was ~18 mGal (ܥܱܪ error of ~40 mm at 

~2,000 m elevation), which is ~75% of the largest ݃ߝ஻ெ஺ேீ஽, suggesting that, in these 

extreme cases, Ω஻ெ஺ே௅ேuncertainty accounts for a larger proportion of ݃ߝ஻ெ஺ேீ஽ than ݃ߝ஻ொீெ. 
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3.4 Omission error in EGM2008 ࡹ࡮ࢍ 

Omission error in EGM2008 is another contributor to errors in ݃஻ொீெ.  Terrestrial ݃௢௕௦ 

contain all gravity field signal frequencies, but the resolution of EGM2008 is 5 arc-

minutes (~9 km at Australian latitudes) which results in the omission of high-frequency 

signals (e.g., Hirt, 2010).  Moderately rugged terrain, like the Australian Alps 

(elevations up to 2,228 m; Fig. 2), is susceptible to omission error (e.g., Claessens et al., 

2009). 

An estimate of part of the omission error can be computed using the RTM 

technique (Forsberg, 1984).  A subset of 239 ݃௢௕௦஻ெ   in the Australian Alps (cf. Fig. 2) 

was used to test the effect of omission error on ݃஻ொீெ.  The RTM technique does not 

provide the complete omission error, due to the assumption of a linear relationship 

between topography and gravitational potential, uncertainty in the digital elevation 

model (DEM), the spatial resolution of the DEM, and the neglect of local topographic 

mass-density variations (a constant density of 2670 kg m-3 was used).  Omission error 

estimates at BMs in the Australian Alps subset shown here were computed from the 

RTM, using the data and methods described in Hirt (2010). 
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Figure 2: Shuttle Radar Topography Mission (SRTM) heights (in m) in the Australian 

Alpine subset, and Australian National Levelling Network (ANLN) benchmarks (black 

dots), demonstrating the moderately rugged terrain and the levelling section routes.  

 

The RTM-estimated omission error (ߝோ்ெ) was used as an approximate 

‘correction’ for ݃ߜ஻ொீெ ݃ߜ஻ெோ்ெ ൌ ஻ொீெ݃ߜ ൅   .஻ெோ்ெ was then used to re-compute ݃஻ொீெ (referred to as ݃஻ெோ்ெ ) using Eq.(2)݃ߜ ோ்ெ       (11)ߝ

The ߝோ்ெ effect on ݃஻ொீெ (݃ߝ஻ெோ்ெ) in the moderately mountainous study region is 

evaluated by a comparison between ݃ߝ஻ெோ்ெ ݃ߝ஻ெோ்ெ ൌ ݃஻ெோ்ெ െ ݃௢௕௦஻ெ        (12) 

and ݃ߝ஻ொீெ (Eq.(9))  for the 239 ݃௢௕௦஻ெ  (results in Table 1). 
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Statistic ݃ߝ஻ொீெ ݃ߝ஻ெோ்ெ 
Min -16.73 -23.78 
Max 46.00 28.13 
Mean 5.67 2.27 
STD ±9.66 ±5.20 
RMS ±11.20 ±5.67 

 

Table 1: Descriptive statistics for ݃ߝ஻ொீெ and ݃ߝ஻ெோ்ெ at 239 BMs in the Australian Alps. 

Units in mGal. 

 

Table 1 indicates that as much as 50% of ݃ߝ஻ொீெ (e.g., RMS ±11.2 mGal reduced 

to ±5.7) identified in the Australian Alps (Fig. 2) may be caused by omission error in 

EGM2008 (cf. Pavlis et al., 2007; Hirt et al., 2010a, 2011). 

 

3.5 Aliasing of terrestrial gravity in mountains 

Terrestrial ݃௢௕௦ in rugged terrain are usually taken along roads that primarily run 

through valleys, avoiding less accessible regions with high elevations (cf. Janák and 

Vaníček, 2005).  This poor sampling of the gravity field makes it possible that the 

ANGD does not represent the gravity field in the Australian Alps properly (cf. 

Featherstone and Kirby, 2000).  On the other hand, 5 arc minute area mean gravity 

anomalies used in EGM2008 were supplemented by RTM implied gravity anomalies of 

the same resolution (Pavlis et al., 2012), which may have reduced the effect of spatial 

aliasing of ANGD ݃௢௕௦ used by EGM2008 in the Australian Alps.  

Comparison between least-squares adjusted Helmert ܪை in the Australian Alps 

using ݃஻ொீெ (not ݃஻ெோ்ெ) versus ݃஻ெ஺ேீ஽ to compute ܥܱܪs show Helmert ܪை using ݃஻ொீெ 

to be up to 129 mm higher (mean difference of +57 mm) than Helmert ܪை using ݃஻ெ஺ேீ஽ 

at 241 BMs (Filmer, 2010, Chapter 7).  This indicates a systematic difference between 
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EGM2008 and ANGD in the Australian Alps, which can only be partially explained by Ω஻ெ஺ே௅ே error and EGM2008 omission error (here, ߝோ்ெ is not removed from ݃஻ொீெ).   

This can be tested, albeit indirectly, for ݃஻ொீெ  and ݃஻ெ஺ேீ஽ by comparing any 

decrease in levelling loop misclosures after applying ܥܱܪs and ܰܥs (cf. Ramsayer, 

1959).  As an example, 18 first-order levelling loops (maximum allowable misclosure 

of 4√݀  mm) in the Australian Alps were used to test any differences.  Table 2 shows a 

decrease (as would be expected from theory) in the loop misclosures (ܿ௅ in mm, where ܿ௅ ൌ ௅ܯ √݀⁄  ܥܱܪ ௅ is the loop misclosure; Filmer and Featherstone, 2009) afterܯ ; 

and ܰܥ are applied to the levelling compared to when no HC is applied.  The decrease 

for mean ܿ௅ is 0.47 mm (13%) when using ݃஻ொீெ compared to a decrease of 0.30 mm 

(8.5%) when using ݃஻ெ஺ேீ஽. 

 

 No HC ܥܰ ܥܱܪ 
  ݃஻ொீெ ݃஻ெ஺ேீ஽ ݃஻ொீெ ݃஻ெ஺ேீ஽ 
Min 0.367 0.193 0.393 0.180 0.413 
Max 14.464 11.630 13.518 11.629 13.544 
Mean 3.540 3.068 3.237 3.072 3.241 
 

Table 2: ܿ௅ (mm) for 18 first-order Australian National Levelling Network (ANLN) 

loops in the Australian Alps. 

 

While acknowledging that the decreases in loop closures in Table 2 are small in 

relation to the precision of the levelling, the apparently systematic effect does suggest 

that, despite ݃஻ொீெ containing large errors in the Australian Alps (cf. Filmer et al., 2010; 

Claessens et al., 2009), ݃஻ொீெ appears to better represent gravity here.  There are several 

possible reasons for this, which will be discussed next. 
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4. DISCUSSION 

We have investigated five sources of error that can propagate into ݃஻ெ from two 

different methods (Table 3).  We now summarise the effect of these on ݃஻ொீெ, from 

EGM2008 using Eq.(2) and on ݃஻ெ஺ேீ஽, from ANGD terrestrial ݃௢௕௦ using Eqs.(3) and 

(4).   

Error type ݃ߝ஻ொீெ 
(mGal) 

 ܥܱܪߜ
(mm) 

 ஻ெ஺ேீ஽݃ߝ
(mGal) 

 ܥܱܪߜ
(mm) 

Comment 

Barometer 
height at ݃௢௕௦ 

~0.3 <1 ~2 <10 Crude estimate of STD 

Horizontal 
datum 

~2 <10 ~2 <10 Maximum error 

BM uncertainty ~22 ~55 ~18 ~40 
Maximum error for 

Australia 

Omission error ~5 ~15 NA NA 
 ோ்ெ RMS in theߝ
Australian Alps 

Poor spatial 
sampling in 
mountains 

NA NA 50 ~120 
Maximum error based on 

difference in max. 
elevations ANGD/ANLN 

 

Table 3: Summary of errors investigated and their magnitude. Note that some of these 

error magnitudes are STD/RMS, and some are maximum magnitude. Barometer height 

error is adopted from Fraser et al. (1976) and Barlow (1976). ܥܱܪߜ is estimated at 

2228 m in Australian Alps (maximum for Australia) and is adopted from Filmer and 

Featherstone (2011). 

 ௕ can be ~2 mGal for olderܪߜ  .௕ at ݃௢௕௦ impact on both ݃஻ொீெ and ݃஻ெ஺ேீ஽ܪߜ 

ANGD ݃௢௕௦ (Barlow 1977) and map directly into ݃஻ெ஺ேீ஽.  Densification of the ANGD 

with more precise GPS heighting has probably been a factor in diluting the impact of ܪߜ௕ over time.  ݃ߝ஻ெ஺ேீ஽ RMS for 9,527 ݃௢௕௦஻ெ  is 2.1 mGal over all Australia (see Filmer, 

2010, Chapter 6), so assuming that errors from Ω஻ெ஺ே௅ே uncertainty/error, poor gravity 
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sampling and interpolation are likely to comprise a large part of this error budget (see 

Table 3), ܪߜ௕ probably contribute < 1 mGal.  Their effect on ݃஻ொீெ is less certain, but 

appear to be smaller than for ݃஻ெ஺ேீ஽ based on EGM2008 error estimates from Pavlis et 

al. (2012).  

Inconsistent horizontal datums among different datasets (e.g., Hinze et al., 2005) 

impact upon both ݃஻ொீெ and ݃஻ெ஺ேீ஽ through ݃ߜாீெ and ANGD Δ݃ௌ௉஻ being 

systematically computed in a different location to the true position of the BM (cf. Heck 

1990; Featherstone 1995).  In our case study, the maximum possible error for  ݃஻ொீெ 

and ݃஻ெ஺ேீ஽ is ~±2 mGal which propagate into a HOC error of <10 mm at Australia’s 

highest point.  Although the magnitude of the errors are similar, it is noticeable in Fig. 1 

(also cf. Filmer, 2010, Chapter 6) that ݃ߜ (and thus ݃஻ொீெ) appears more susceptible to 

this problem in the eastern Australian mountains, while Δ݃ௌ௉஻ and therefore ݃஻ெ஺ேீ஽ are 

more susceptible in central and western Australia, where Δ݃ௌ௉஻ are rougher (Zhang and 

Featherstone, 2004). 

Errors caused by large uncertainties in BM location are an extension of the 

inconsistent horizontal datum problem, but are random rather than systematic errors.  

This is a problem rarely discussed in the literature (cf. Tscherning, 1980), perhaps 

because geoid computations often use mean gravity anomalies that are not so reliant on 

gravity values at a specific point.  Using a simple method, we found that maximum 

possible errors in (moderately) mountainous terrain for Ω஻ெ஺ே௅ே 1 arc-minute errors can 

reach ~22 mGal for ݃஻ொீெ and propagates into gravimetric HCs causing ~55 mm errors 

at elevations of 2,228 m (Filmer and Featherstone, 2011).   

This again highlights ݃ߜ sensitivity in mountainous terrain, suggesting that 

uncertainty in Ω஻ெ஺ே௅ே may be a significant impediment to using modelled gravity to 
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predict ݃஻ெ.  In contrast, Ω஻ெ஺ே௅ே uncertainty does not appear to have such a large effect 

on Δ݃ௌ௉஻ in the Australian Alps (<5 mGal), because Δ݃ௌ௉஻ are relatively smooth in this 

region. Repeating this test over all Australia showed that ߝ ଵ݃஺ேீ஽ can reach 18 mGal in 

extreme cases in central and western Australia (see Figs. 1(a) and (b)) because Δ݃ௌ௉஻ 

are rougher in this region. Zhang and Featherstone (2004) attributed this to observed 

gravity being more strongly correlated with subsurface density variations in areas where 

the elevations are smooth because of the heavily weathered topography, suggesting a 

more complicated subsurface geological structure in Central Australia.  Maximum ݃ߝ஻ெ஺ேீ஽ (magnitude) is 24 mGal (Filmer, 2010, Chapter 6) indicating that Ω஻ெ஺ே௅ே 

uncertainty may account for up to 75% of ݃ߝ஻ெ஺ேீ஽ in extreme cases, but can only 

account for ~40% of maximum ݃ߝ஻ொீெ in the Australian Alps where ݃ߝ஻ொீெ is at its 

largest. 

We tested the effect of EGM2008 omission error on ݃஻ொீெ in the Australian 

Alps.  This error was considered only for modelled gravity, finding that when ߝோ்ெ was 

removed from ݃஻ொீெ, ݃ߝ஻ெோ்ெ RMS was ~50% of ݃ߝ஻ொீெ RMS (11.2 mGal versus 5.7 

mGal; Table 1).  This can be compared to Hirt et al. (2011), where an improvement of 

~90% for Swiss data (European Alps) was found respectively after ߝோ்ெ removal.  This 

suggests that the ߝோ்ெ contribution to ݃ߝ஻ொீெ in Australia is competing against other 

significant errors (e.g., Ω஻ெ uncertainty) that may not be present in the Swiss data, 

although the larger mountains in the European Alps also affect the results. 

Levelling loop closures were used to test the relative merits of ݃஻ொீெ and ݃஻ெ஺ேீ஽ 

for HCs in mountainous terrain.  Because ݃ߝ஻ொீெ are larger than ݃ߝ஻ெ஺ேீ஽ in the 

Australian Alps test area (Eqs. (9) and (10)), we assumed that HCs using ݃஻ெ஺ேீ஽ would 

result in larger decreases in the loop closures.  However, HCs using ݃஻ொீெ performed 
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marginally better, which is somewhat enigmatic, although acknowledging the 

differences in the loop closures are small and that other systematic levelling errors may 

mask the benefit of the HCs.  One plausible explanation for the smaller first-order loop 

closures using ݃஻ொீெ compared to ݃஻ெ஺ேீ஽ is unrepresentative sampling of ANGD ݃௢௕௦.  

This can occur in mountainous areas, where ݃௢௕௦ are taken predominately in accessible 

low-lying areas, often along roads that run through valleys (e.g., Papp and Szűcs, 2011) 

although Janák and Vaníček (2005) describe an example in Canada where aliasing is 

caused by ݃௢௕௦ being taken on mountain tops. 

For example, the ANGD maximum ݃௢௕௦ height is 1,975 m, while the maximum 

ANLN BM height is 2,228 m.  This 253 m difference could cause an error in Δ݃ௌ௉஻ of 

~50 mGal (using 0.1967 mGal m-1), which causes a ܥܱܪ error of ~120 mm (Filmer and 

Featherstone, 2011), which perhaps coincidentally (assuming the presence of other 

large errors) is the Helmert ܪை difference when using ݃஻ொீெ versus ݃஻ெ஺ேீ஽ (Section 3.5).  

This unrepresentative sampling leads to spatial aliasing in ݃஻ெ஺ேீ஽, resulting in 

gravimetric HC computed using ݃஻ெ஺ேீ஽ being systematically too small.  

The 5 arc-minute area mean gravity anomalies used for EGM2008 were 

supplemented by RTM-implied gravity anomalies computed from a 30 arc-second DEM 

(Pavlis et al., 2012), which appear to have reduced the effect of spatial aliasing of ݃௢௕௦ 

in the Australian Alps.  This offers an explanation for the apparent superiority of ݃஻ொீெ 

over ݃஻ெ஺ேீ஽ for the loop closure comparison.  Possible remedies include densification of ݃௢௕௦ at higher elevations by survey, gravity ‘reconstruction’ at higher elevations (e.g., 

Lemoine et al., 1998; Featherstone and Kirby, 2000), or forward modelling using a 

DEM to predict ݃௢௕௦ (e.g., Papp et al., 2009) in sparsely observed areas of high 

elevation. 



25 
 

5. CONCLUSIONS AND RECOMMENDATIONS 

We have tested ݃஻ெ predicted from modelled and terrestrial ݃௢௕௦ for errors that may 

impede their use for HCs in the development of a gravimetric height system if 

redefining a vertical datum.  The errors investigated are mostly a function of 

inadequacies in the metadata of the terrestrial gravity database or the levelling network.  

We have used 3 mGal as the maximum tolerable error for this study in Australia, below 

which ݃ߝ஻ெ have a negligible effect on HCs (notably the ܥܱܪ), but this threshold value 

should be lowered in more mountainous countries, depending on whether the ܥܱܪ or ܰܥ is used. ݃஻ெ predicted from modelled and terrestrial gravity are both affected by ܪߜ௕ at 

terrestrial ݃௢௕௦ (݃஻ெ஺ேீ஽ moreso) and errors caused by inconsistent horizontal datums, 

but these errors appear to be mostly nuisance values, rather than the cause of errors >3 

mGal.  Modelled gravity is a realistic option for predicting ݃஻ெ for computing HCs, but 

impediments are signal omission and approximate horizontal BM positions, which 

between them account for most of ݃ߝ஻ெ from modelled gravity.  The impact of both of 

these errors are larger in mountainous regions, but while RTM techniques can be used 

to compute ‘approximate’ corrections for signal omission, the solution for approximate 

BM position remains more problematic.  

Horizontal BM position errors seem to be a little-discussed problem in the 

geodetic literature, but needs addressing because using state-of-the-art gravity models to 

predict gravity a kilometre or more away from the true position of the BM can lead to 

large errors in HCs and hence in gravimetric heights.  By comparison, ݃ߝ஻ெ from 

predicted terrestrial ݃௢௕௦ comprise mostly errors due to approximate BM positions, but 

also to unrepresentative sampling in mountainous terrain causing ݃ߝ஻ெ that could lead 
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to ܥܱܪ errors of ~120 mm in the Australian Alps.  Denser gravity in mountainous 

regions through survey or forward modelling techniques present some possible 

remedies.  
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