208 research outputs found

    Neutrophil-tumor cell phagocytosis (cannibalism) in human turoms: an update and literature review

    No full text
    The recognition and removal of apoptotic cells by tissue macrophages and nonprofessional phagocytes, in a process called efferocytosis, is critical for development, tissue homeostasis and resolution of inflammation. Apoptotic bodies arising in tumor tissue are ingested by viable neoplastic cells and by resident macrophages. We described tumor cell phagocytosis of apoptotic neutrophils in human gastric carcinomas. This phenomenon is analogous to neutrophil efferocytosis performed by macrophages and by nonprofessional phagocytes during inflammatory reaction but is distinct by other types of cell-in-cell phenomena including emperipolesis and entosis both cytologically and biologically. In this review, we discussed them in their ultrastructural morphology, physiolo­gical roles, and clinicopathologic implications. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”

    Flowerlike WSe2 and WS2 microspheres: One-pot synthesis, formation mechanism and application in heavy metal ion sequestration

    Get PDF
    Flowerlike WSe2 and WS2 microspheres were synthesized by a facile and scalable one-pot solvothermal method. Their formation mechanism followed the reaction between dissolved W(CO)6 and dissolved S or melted Se without complete decomposition of W(CO)6 into tungsten. As novel efficient sorbents, WSe2 and WS2 demonstrated outstanding uptake capacities for Pb2+ and Hg2+

    Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites

    Get PDF
    Mesoporous aluminium magnesium oxide composites with varying composition (Mg content: 0–100%) and high surface area (118–425 m2 g−1) are synthesized by a facile, low-cost and scalable sol–gel method. The mesostructure and crystallinity are controlled by varying the composition and calcination temperature. The mesopores evolve from hexagonally ordered to wormhole-like in structure with increasing Mg/Al ratio. The mesoporous aluminium magnesium oxide composites are highly efficient adsorbents for removing As(V) and As(III) from water. The mesoporous magnesium oxide shows unprecedentedly high adsorption capacities of 912 mg g−1 for As(V) at pH 3 and 813 mg g−1 for As(III) at pH 7 with a dose of 0.5 g L−1; significantly higher than those of reported adsorbents. Exceptional adsorption capacities for arsenic are retained over a wide pH range, and high selectivity for As(V) is realized even in the presence of co-existing anions. The arsenic adsorption performance correlates to the properties of the composites including the Mg/Al ratio, point of zero charge, crystallinity and mesostructure. The arsenic adsorption mechanism is elucidated. Due to their high surface areas, large pore volumes, tunable mesopore structures and high quantities of accessible hydroxyl groups with strong chemisorption binding affinity to arsenic, as well as extremely high adsorption capacities and selectivity, these mesoporous aluminium magnesium oxides are promising adsorbent candidates for the remediation of arsenic in water

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore