41 research outputs found

    Role of Multichance Fission in the Description of Fission-Fragment Mass Distributions at High Energies

    Get PDF
    Fission-fragment mass distributions were measured for U237-240, Np239-242, and Pu241-244 populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction O18+U238 at the Japan Atomic Energy Agency tandem facility. Among them, the data for U240 and Np240,241,242 were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission

    Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    Get PDF
    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O +  232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model

    Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues

    Get PDF
    Anthocyanin pigments have become a model trait for evolutionary ecology as they often provide adaptive benefits for plants. Anthocyanins have been traditionally quantified biochemically or more recently using spectral reflectance. However, both methods require destructive sampling and can be labor intensive and challenging with small samples. Recent advances in digital photography and image processing make it the method of choice for measuring color in the wild. Here, we use digital images as a quick, noninvasive method to estimate relative anthocyanin concentrations in species exhibiting color variation. Using a consumer‐level digital camera and a free image processing toolbox, we extracted RGB values from digital images to generate color indices. We tested petals, stems, pedicels, and calyces of six species, which contain different types of anthocyanin pigments and exhibit different pigmentation patterns. Color indices were assessed by their correlation to biochemically determined anthocyanin concentrations. For comparison, we also calculated color indices from spectral reflectance and tested the correlation with anthocyanin concentration. Indices perform differently depending on the nature of the color variation. For both digital images and spectral reflectance, the most accurate estimates of anthocyanin concentration emerge from anthocyanin content‐chroma ratio, anthocyanin content‐chroma basic, and strength of green indices. Color indices derived from both digital images and spectral reflectance strongly correlate with biochemically determined anthocyanin concentration; however, the estimates from digital images performed better than spectral reflectance in terms of r2 and normalized root‐mean‐square error. This was particularly noticeable in a species with striped petals, but in the case of striped calyces, both methods showed a comparable relationship with anthocyanin concentration. Using digital images brings new opportunities to accurately quantify the anthocyanin concentrations in both floral and vegetative tissues. This method is efficient, completely noninvasive, applicable to both uniform and patterned color, and works with samples of any size

    Within-individual phenotypic plasticity in flowers fosters pollination niche shift

    Get PDF
    Authors thank Raquel Sånchez, Angel Caravante, Isabel Sånchez Almazo, Tatiana López Pérez, Samuel Cantarero, María José Jorquera and Germån Fernåndez for helping us during several phases of the study and Ivån Rodríguez Arós for drawing the insect silhouettes. This research is supported by grants from the Spanish Ministry of Science, Innovation and Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017- 86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18- FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness (RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund (ERDF), reference SOMM17/6109/UGR.Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer.Spanish Ministry of Science, Innovation and Universities (EU FEDER funds) CGL2015-71634-P CGL2015-63827-P CGL2017-86626-C2-1-P CGL2017-86626-C2-2-P UNGR15-CE-3315Junta de Andalucia P18-FR-3641Xunta de GaliciaBBVA Foundation PR17_ECO_0021Spanish Ministry of Economy and Competitiveness RYC-2012-12277Consejeria de Economia, Conocimiento, Empresas y Universidad SOMM17/6109/UGREuropean Union (EU) SOMM17/6109/UG

    Performances of Metal Particle-Dispersed Ceria Hydrogen Electrodes in Reversible SOFCs

    No full text
    Solid oxide fuel cells (SOFCs) can be operated in reverse as solid oxide electrolysis cells (SOECs) to generate pure hydrogen from water vapor with the highest possible efficiency, due to favorable thermodynamic and kinetic conditions. Thus, the so-called reversible SOFC is regarded as a reciprocal direct energy converter between hydrogen and electricity. The operating temperature of SOEC is, so far, restricted to about 1000 o C because of insufficient performance of the state-of-the-art electrolyte and electrodes at low temperatures. Lowering the operating temperature is a good option to overcome a limited choice of the component materials, as well as to utilize waste heat from various sources. It is essential to develop high performance electrodes for the reversible SOFCs operated at reduced temperatures. We have developed a mixed conducting samaria-doped ceria (SDC) porous electrode with highly dispersed Ni catalysts in the reversible SOFCs. 1-5 Recently, we have succeeded to synthesize nanometer-sized Ni catalysts supported on hollow spherical particles of SDC (Ni/SDC) by spraying a mixed solution of nickel, samarium, and cerium nitrates into an atmospheric pressure plasma. The SSP apparatus consisted of an ultrasonic mist generator for the catalyst precursor solution, a plasma torch reactor, and a catalyst particle collector with a water shower. 6, 7 A mixture of Ar and O 2 was used as the carrier gas for the mist and the plasma-forming gas. A mixed solution of Ce and Sm nitrates was prepared to form (CeO 2 ) 0.8 (SmO 1.5 ) 0.2 . Ni and Co acetates were added in the solution so as to control the total metal content at 17 vol.% in the composite after the reduction, which corresponds to the optimal one for Ni/SDC in our SOEC. 5 In the case of Ni/SDC (X = 0), the mist in the plasma was found to be decomposed completely within ca. 0.2 s, resulting in mixed oxides of NiO and SDC. 6 From X = 10 to 50, the formation of solid solution Ni 100 -X Co X O was identified by XRD. A representative SEM image of the Ni 100 -X Co X O-SDC (X=20) particles is shown in Onto an 8 mol% YSZ electrolyte disk, a porous Ni 100 -X Co X /SDC electrode was prepared. A porous Pt counter electrode was formed on the backside of the YSZ disk

    Composite large cell neuroendocrine carcinoma and adenocarcinoma of the common bile duct

    No full text
    Large cell neuroendocrine carcinoma (LCNEC) is a high grade type of neuroendocrine tumour with an aggressive clinical course. This report describes the first case of LCNEC combined with an adenocarcinoma component in the common bile duct. A 68 year old man presented with jaundice. Severe stenosis of the bile duct was revealed by endoscopic retrograde cholangiography, and adenocarcinoma cells were detected by brush cytology. Pancreaticoduodenectomy was performed, and the patient died of disease three months after surgery. A tumour measuring 2.0 cm in diameter was located in the intrapancreatic portion of the bile duct. Histologically, the tumour consisted of a LCNEC component and a well differentiated adenocarcinoma component. There were transitional areas between the two components. Immunohistochemically, LCNEC cells were reactive for neuroendocrine markers, but no specific hormonal expression was found. Chromogranin A positive cells were found in some areas of the adenocarcinoma component. These findings are consistent with the theory that both of the carcinoma components originated from a common pluripotent stem cell

    Aspectual Caml

    No full text

    Fission Study of Actinide Nuclei Using Multi-nucleon Transfer Reactions

    Get PDF
    Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3We have developed a set up to measure fission properties of excited compound nuclei populated by multi-nucleon transfer reactions. This approach has an advantage that we can study fission of neutron-rich nuclei which cannot be accessed by particle or charged-particle capture reactions. Unique feature in our setup is that we can produce fission data for many nuclei depending on different transfer channels. Also wide excitation energy range can be covered in this set up, allowing us to measure the excitation energy dependence of the fission properties. Preliminary data obtained in the [18]O + [238]U reaction will be presented
    corecore