97 research outputs found
Soil biota in boreal urban greenspace : Responses to plant type and age
Plant functional type influences the abundance and distribution of soil biota. With time, as root systems develop, such effects become more apparent. The relationship of plant type and time with the structure and abundance of soil microbial and invertebrate communities has been widely investigated in a variety of systems. However, much less is known about long-term soil community dynamics within the context of urban environments. In this study, we investigated how soil microbes, nematodes and earthworms respond to different plant functional types (lawns only and lawns with deciduous or evergreen trees) and park age in 41 urban parks in southern Finland. As non-urban controls we included deciduous and evergreen trees in 5 forest sites. We expected that microbial biomass and the relative abundance of fungi over bacteria would increase with time. We also expected major differences in soil microbial and nematode communities depending on vegetation: we hypothesized that i) the presence of trees, and evergreens in particular, would support a greater abundance of fungi and fungal-feeding nematodes over bacteria and bacterial-feeding nematodes and ii) the fungi to bacteria ratio would be lowest in lawns, with deciduous trees showing intermediate values. In contrast to our predictions, we showed that old deciduous trees, rather than evergreens, supported the highest fungal abundances and fungal-feeding nematodes in the soil. Consistent with our predictions, microbial biomass in urban park soils tended to increase with time, whereas - in contrast to our hypotheses - fungal-feeding nematode abundance declined. Even in the oldest parks included in the current study, microbial biomass estimates never approximated those in the minimally managed natural forests, where biomass estimates were three times higher. Anecic earthworm abundance also increased with time in urban parks, whereas abundances of fungal-feeding, plant-feeding and omnivorous nematodes, as well as those of epigeic and endogeic earthworms remained constant with time and without any distinct differences between urban parks and the control forests. Our findings highlight that although urban park soils harbor diverse soil communities and considerable microbial biomass, they are distinct from adjacent natural sites in community composition and biomass.Peer reviewe
A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System
International audienceBACKGROUND: Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. FINDINGS: We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. CONCLUSION: This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate "particularity" (empirical observations) and "generality" (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary
Bacterial Communities Involved in Soil Formation and PlantEstablishment Triggered by Pyrite Bioweathering on ArcticMoraines
Abstract In arctic glacier moraines, bioweathering primed
by microbial iron oxidizers creates fertility gradients that
accelerate soil development and plant establishment. With
the aim of investigating the change of bacterial diversity in
a pyrite-weathered gradient, we analyzed the composition
of the bacterial communities involved in the process by
sequencing 16S rRNA gene libraries from different biological
soil crusts (BSC). Bacterial communities in three BSC
of different morphology, located within 1 m distance
downstream a pyritic conglomerate rock, were significantly
diverse. The glacier moraine surrounding the weathered site
showed wide phylogenetic diversity and high evenness with
15 represented bacterial classes, dominated by Alphaproteobacteria
and pioneer Cyanobacteria colonizers. The bioweathered
area showed the lowest diversity indexes and only nine
bacterial families, largely dominated by Acidobacteriaceae
and Acetobacteraceae typical of acidic environments, in
accordance with the low pH of the BSC. In the weathered
BSC, iron-oxidizing bacteria were cultivated, with counts
decreasing along with the increase of distance from the rock,
and nutrient release from the rock was revealed by
environmental scanning electron microscopy-energy dispersive
X-ray analyses. The vegetated area showed the presence
of Actinomycetales, Verrucomicrobiales, Gemmatimonadales,
Burkholderiales, and Rhizobiales, denoting a bacterial
community typical of developed soils and indicating that the
lithoid substrate of the bare moraine was here subjected to an
accelerated colonization, driven by iron-oxidizing activity
Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems
This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contri-bution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of mi-crobial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the microbial contribution to C seques-tration is governed by the interactions between the amount of micro-bial biomass, microbial community structure, microbial byproducts, and soil properties such as texture, clay mineralogy, pore-size distribu-tion, and aggregate dynamics. The capacity of a soil to protect micro-bial biomass and microbially derived organic matter (MOM) is directly and/or indirectly (i.e., through physical protection by aggregates) related to the reactive properties of clays. However, the stabilizatio
- âŠ