233 research outputs found

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Vibrational signatures for low-energy intermediate-sized Si clusters

    Get PDF
    We report low-energy locally stable structures for the clusters Si20 and Si21. The structures were obtained by performing geometry optimizations within the local density approximation. Our calculated binding energies for these clusters are larger than any previously reported for this size regime. To aid in the experimental identification of the structures, we have computed the full vibrational spectra of the clusters, along with the Raman and IR activities of the various modes using a recently developed first-principles technique. These represent, to our knowledge, the first calculations of Raman and IR spectra for Si clusters of this size

    Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer’s Disease neurodegeneration

    Get PDF
    There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF), may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs) impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154) who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met), rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459). We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108). No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850). We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD-related brain neurodegeneration

    Insulin Resistance and Gray Matter Volume in Neurodegenerative Disease

    Get PDF
    The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n = 21) and neurodegenerative disease (Alzheimer’s disease (AD), n = 20; Parkinson’s disease (PD), n = 22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. We found that HOMA2 was increased in both AD and PD compared to the HC group (HC vs. AD, p = 0.002, HC vs. PD, p = 0.003), although only AD subjects exhibited increased fasting glucose (p = 0.005). Furthermore, our voxel-based morphometry analysis revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p < 0.001, uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia

    Voxel-Based Morphometry Reveals Brain Gray Matter Volume Changes in Successful Dieters

    Get PDF
    Objective: To compare regional brain volume predictors of percent weight loss (WL) in dieters with obesity (DwO) and in the same participants categorized as “successful” (≥7% WL) or “unsuccessful” dieters

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial

    Get PDF
    Background Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer’s-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. Methods and findings This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. Conclusions Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases

    Exploring miniature insect brains using micro-CT scanning techniques

    Get PDF
    This is an open access article. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
    • …
    corecore