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Abstract

The goal of this study was to compare insulin resistance in aging and aging-related 

neurodegenerative diseases, and to determine the relationship between insulin resistance and gray 

matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance 

was estimated in apparently healthy elderly control (HC, n = 21) and neurodegenerative disease 

(Alzheimer’s disease (AD), n = 20; Parkinson’s disease (PD), n = 22) groups using Homeostasis 

Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test 

(IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model 

multiple regression. We found that HOMA2 was increased in both AD and PD compared to the 

HC group (HC vs. AD, p = 0.002, HC vs. PD, p = 0.003), although only AD subjects exhibited 

increased fasting glucose (p = 0.005). Furthermore, our voxel-based morphometry analysis 

revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p < 0.001, 

uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial 

temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship 

between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative 

relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased 

brain volume), while a positive relationship was observed in PD. This cross-sectional study 

suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with 

AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.
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INTRODUCTION

Insulin is most widely recognized for its prominent role in glucose clearance from blood. 

However, insulin signaling also modulates a wide variety of other cellular processes, 

including neurotransmission, vesicular trafficking, exocytosis, and cell survival (Wan et al., 

1997; Gasparini et al., 2001; van der Heide et al., 2006; Jewell et al., 2011). While it is 

difficult to directly measure insulin resistance in the brain in vivo, studies on post-mortem 

tissue have shown markers of insulin resistance in both Alzheimer’s Disease (AD) and 

Parkinson’s Disease (PD) brains (Takahashi et al., 1996; Steen et al., 2005; Lee et al., 2009; 

Moloney et al., 2010; Liu et al., 2011). In fact, overcoming insulin resistance in AD is the 

basis for clinical trials of intranasal insulin. These trials have shown improvements in 

cognitive outcomes in individuals who receive intranasal insulin for mild AD (Reger et al., 

2008; Craft et al., 2012). These findings provide a rationale for additional studies of the 

relationship between insulin resistance and neurodegeneration.

Although important cellular functions are set into motion by insulin signaling and 

interrupted by insulin resistance, the degree to which insulin resistance contributes to the 

development of neurodegenerative disease is contentious (Simon et al., 2007; Thambisetty et 

al., 2013) and an area of active research. The most convincing evidence for a role of insulin 

resistance in the neurodegenerative process stems from numerous reports that diabetes 

increases both AD (Ott et al., 1999; Xu et al., 2009; Cheng et al., 2011) and PD (Hu et al., 

2007; Schernhammer et al., 2011; Xu et al., 2011) risk. It has thus been proposed that insulin 

resistance is a common underlying mechanism in neurodegenerative disease (Ristow, 2004). 

However, clinical studies that compare the degree of insulin resistance across 

neurodegenerative disease cohorts are lacking, and a direct comparison of metabolic 

function between the two most common neurodegenerative diseases, AD and PD, has not 

been performed.

Only two previous studies have assessed the relationship between homeostasis model 

assessment of insulin resistance 2 (HOMA2) and brain atrophy. One study examined in late 

middle-aged, cognitively normal subjects (Willette et al., 2013), while the other focused on 

cognitively healthy elderly (Benedict et al., 2012). Although the latter study analyzed a 

subgroup of cognitively- impaired individuals, these subjects were not diagnosed with AD 

or any other dementia. There have been no studies to assess the relationship between gray 

matter volume (GMV) and HOMA2 in AD or PD using Voxel-Based Morphometry (VBM), 

which allows for analyses across the whole brain with minimal user bias. This is also the 

first study to compare insulin resistance between AD and PD. Both diabetes and 

hyperinsulinemia are associated with changes in brain structure, including whole-brain 

(Araki et al., 1994) and medial temporal atrophy (den Heijer et al., 2003), and both patterns 

have been associated with accelerated aging and neurodegeneration. Insulin resistance has 
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been linked with greater atrophy rates in cognitively normal subjects (Benedict et al., 2012; 

Willette et al., 2013), and in non-diabetic AD subjects, increased insulin response was 

positively associated with longitudinal brain volume (Burns et al., 2012). The relationship 

between insulin resistance and brain volume is unexplored in PD. Because these 

neurodegenerative diseases may not elicit the same metabolic profile, our primary goal was 

to characterize these cohorts and understand the relative relationships between metabolic 

function (insulin resistance) and diagnosis, and as an additional approach to analyze the 

impact of metabolic function on brain structure. Due to the role of insulin as a growth factor 

and growing literature characterizing insulin resistance as a risk factor for 

neurodegeneration, we hypothesized that insulin resistance will be different between 

neurodegenerative disease groups, as well as related to decreased GMV in individuals with 

neurodegenerative disease.

EXPERIMENTAL PROCEDURES

Standard protocol approvals, registrations, and patient consents

This study was approved by the University of Kansas Medical Center’s Institutional Review 

Board. All participants in this study provided informed consent according to institutional 

guidelines and this project was performed in accordance with the Declaration of Helsinki. 

Exclusion criteria included diabetes diagnosis or the use of diabetic medications.

Clinical assessment and diagnosis

Apparently healthy elderly control (HC; n = 21) and AD (n = 20) subjects over the age of 65 

were randomly selected from the KU Brain Aging Project and screened for eligibility. 

Participants were recruited from a referral-based memory clinic and by media appeals. The 

goal of the KU Brain Aging Project was to evaluate the role of cardiorespiratory fitness and 

metabolism in aging and AD, and has been described previously (Burns et al., 2007, 2011). 

AD diagnosis required gradual onset of cognitive symptoms and progression of memory 

impairment in addition to at least one other cognitive and functional domain (McKhann et 

al., 1984). The presence or absence of dementia was evaluated by a trained clinician that 

included a Clinical Dementia Rating (CDR) (Morris, 1993). All HC subjects had a Global 

CDR of 0 and were deemed cognitively normal by a clinician, while AD participants had a 

Global CDR of 1. PD subjects (n = 22) were recruited from the Parkinson’s Disease and 

Movement Disorder Center at the University of Kansas Medical Center. Patients were 

diagnosed with idiopathic PD by a neurologist specializing in movement disorders based on 

United Kingdom Brain Bank Criteria (Hughes et al., 1992). Ten of the 22 PD subjects 

exhibited dementia (PDD). Diagnostic criteria for PDD were based on recommendations 

from the Movement Disorder Society Task Force for Level 1 testing (Dubois et al., 2007). 

Extrapyramidal signs were assessed using the motor subscale of the Unified Parkinson’s 

Disease Rating Scale (UPDRS).

Assessment of cognitive and motor function

Neuropsychological assessment was performed by psychometricians and included tests from 

the Uniform Data Set (UDS) used by the national network of Alzheimer’s Disease Centers. 

A normative calculator for this test battery has been published to allow calculation of 
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demographically adjusted norms (Shirk et al., 2011). Data from over 3000 cognitively 

normal individuals that were collected by the National Alzheimer’s Coordinating Center 

during the first 2 years of the use of the UDS were used to develop this tool (Weintraub et 

al., 2009). For our study, we used this tool to compute sex, age, and education-adjusted 

scores for each test. We computed a “global cognition” score, by averaging the normed 

scores from all individual tests in the UDS Neuropsychologic Test Battery, and “domain” 

scores by averaging scores from UDS tests that fell into the cognitive domains of memory 

(Logical Memory Immediate and Delayed Recall), language (Verbal Fluency and Boston 

Naming Test), attention (Digit Span Forward and Digit Span Backward), and executive 

function/processing speed (Trailmaking Test B, Digit Symbol test) (Weintraub et al., 2009). 

Motor function was assessed using the UPDRS (Ramaker et al., 2002).

Assessment of insulin resistance

HOMA2 calculation—The primary measure of insulin resistance was HOMA2. HOMA2 

is an updated version of the HOMA-IR but allows for an interactive model of the dynamic 

relationship between insulin and glucose. Because insulin secretion does not change linearly 

at increasing fasting glucose levels, HOMA2 utilizes nonlinear modeling and assumes a 

feedback loop between liver and β-cells. HOMA2 considers both hepatic and muscle insulin 

resistance and has been reviewed previously (Wallace et al., 2004). The HOMA2 calculator 

is available for download from the University of Oxford (http://www.dtu.ox.ac.uk/

homacalculator/index.php) (Levy et al., 1998). Additional measures derived from fasting 

glucose and insulin measures were β-cell function (%B), fasting glucose (FG) and fasting 

insulin (FI).

Intravenous glucose tolerance test (IVGTT)—High fasting glucose values primarily 

reflect hepatic insulin resistance (Turner and Holman, 1976), while glucose tolerance tests 

characterize both skeletal muscle and hepatic insulin resistance (Abdul-Ghani et al., 2006). 

To further explore systemic metabolic function, an IVGTT was performed following a 12-h 

fast. A IV glucose bolus (0.3 g/kg) was delivered at Time 0. Blood samples were collected at 

−5, 1, 3, 5, 10, 15, 20, 30, 40, 50, 60, 90, and 120 min for the determination of glucose and 

insulin levels. Area under the curve was computed for glucose (gAUC) and insulin (iAUC).

Neuroimaging

General MRI acquisition procedures—Structural MRI was obtained using a Siemens 

3.0 Tesla Allegra MRI scanner at the Hoglund Brain Imaging Center. High-resolution T1-

weighted (MPRAGE) images were obtained and a T1-weighted axial slice-based structural 

scan was acquired (repetition time/echo time [TR/TE] = 23/4 ms, flip angle = 90°, field of 

view [FOV] = 192 mm, matrix = 256 × 256, slice thickness = 3 mm, 0.5 skip, in-plane 

resolution = 1 × 1 mm). One individual in the PD group was not able to complete the scan 

sequence, thus our imaging data reflect data from 21 PD subjects.

Voxel-based morphometry (VBM)—Data analysis for 60 subjects was performed using 

Statistical Parametric Mapping version 8 (SPM8) algorithms (Wellcome Department of 

Cognitive Neurology, London, UK) running under MATLAB 7.2 (The MathWorks, Natick, 

MA, USA) on Linux. Processing for VBM was done by first creating a sample-specific 
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DARTEL template (Diffeomorphic Anatomical Registration Through Exponentiated Lie 

algebra) (Ashburner, 2007). High-dimensional spatial normalization was then used to 

normalize images to the DARTEL template, and the unified segmentation (“New Segment”) 

model in SPM8 (Ashburner and Friston, 2005) to output warped, modulated, segmented 

images. Final images were smoothed with a 10-mm isotropic Gaussian kernel. GMV, white 

matter volume (WMV), and cerebrospinal fluid volumes (CSF) from the segmentations were 

used to calculate total intracranial volume (TICV).

A General Linear Model (GLM) multiple regression analysis was used to examine the 

relationship between HOMA2 and GMV differences within groups (HC, AD, and combined 

PD groups), including age and sex as confounding variables, and total intracranial volume as 

a global variable. In addition in the VBM analysis of PD subjects, we also did a second 

analysis including a covariate for the presence of dementia to test whether HOMA2 brain 

effects were driven only by subjects with PD dementia. We used a log-transformed HOMA2 

for VBM statistical analysis since HOMA2 was not normally distributed. Voxels are 

reported with reference to the Montreal Neurological Institute standard space within SPM8 

(Honea et al., 2008). For all analyses, results were considered significant at p < .001 

uncorrected, with a cluster size of greater than 100 voxels (k > 100). This was chosen as 

analyses were done within diagnosis groups and thus had a lower power to detect smaller 

brain relationships with HOMA2. Finally, we examined the relationship of HOMA2 with 

medial temporal lobe volume. The small-volume correction (SVC), the bilateral 

hippocampus and bilateral parahippocampus combined, were derived from the Wake Forest 

University Pickatlas (http://www.fmri.wfubmc.edu). This region of interest was preselected 

as insulin studies in neurodegenerative disease have suggested involvement of hippocampal 

structures in metabolic dysfunction (Burns et al., 2007, 2011). To correct for multiple 

comparisons in the SVC analysis, results were considered significant at p < .05 FWE 

corrected.

Statistical analyses

Analyses were performed using SPSS 20. Normality testing (Shapiro–Willk) was performed 

and metabolic variables that were non-normally distributed (HOMA2, fasting insulin and 

fasting glucose) were log-transformed prior to statistical analysis. Normative cognitive 

scores were used in statistical analyses. A one-way analysis of variance (ANOVA) was used 

to assess differences between diagnosis groups, and post hoc comparisons were performed 

using the Least-Significant Difference (LSD) test. Categorical variables were presented as 

frequency and percent, and analyzed using Chi square analysis. Relationships between 

cognitive function, motor function, and HOMA2 were assessed using multiple linear 

regression. All analyses were controlled for age and sex.

RESULTS

Demographics

A total of 63 individuals (HC (n = 21), AD (n = 20), PD (n = 22)) were included in the 

current study. There was no difference in sex, age, or education between groups (Table 1).
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Fasting metabolic measures

Subjects with neurodegenerative disease had greater insulin resistance (HOMA2; F = 7.1, p 
= 0.002) than HC subjects (HC vs. AD, p = 0.002; HC vs. PD, p = 0.003) (Table 2). Fasting 

glucose was also different between groups (F = 7.4, p = 0.001), but post hoc analyses 

revealed that this increase was only present in AD subjects, who had higher glucose levels 

than both HC (p = 0.016) and PD groups (p = 0.004). Fasting insulin levels were different 

between groups (F = 6.8, p = 0.002), with both AD (p = 0.002) and PD (p = 0.003) 

exhibiting higher levels than HC subjects. Interestingly, β-cell function also differed 

between groups (F = 5.6, p = 0.006). This difference was driven by PD subjects, who 

exhibited higher β-cell function than HC subjects (p = 0.001), while AD subjects did not (p 
= 0.128).

Glucose tolerance testing

Glucose and insulin response to a glucose bolus were examined using IVGTT. Glucose area 

under the curve (gAUC) was significantly different between groups (F = 3.25, p = 0.04) 

(Table 2), as AD subjects exhibited significantly higher gAUC than PD subjects (p = 0.033). 

Insulin area under the curve (iAUC) was also different between groups (F = 5.9, p = 0.005). 

As expected, AD subjects did not exhibit an increase in iAUC compared to HC subjects, 

while PD subjects had increased iAUC than the HC group (p = 0.002). A comparison of 

metabolic differences between groups is shown in Table 3.

Anthropometric and cardiovascular measures

Subjects did not differ on body weight or body mass index between groups (Table 2). The 

number of subjects who met criteria for hypertension (blood pressure 140/90 mmHg and 

above) was also not different between groups. However, there was a significant difference in 

systolic blood pressure between groups (p = 0.028), with individuals with AD having higher 

systolic BP than individuals with PD (p = 0.013).

Insulin resistance (HOMA2) and GMV

In HC subjects, increased HOMA2 was associated with less GMV in the right medial frontal 

cortex (Fig. 1, Table 4). In AD subjects, increased HOMA2 was associated with less GMV 

in the hippocampus/parahippocampus, as well as the postcentral gyrus, inferior temporal 

cortex, fusiform gyrus, and cerebellum (Fig. 1, Table 4). Individuals with PD who had 

increased HOMA2 actually exhibited higher GMV than those with lower HOMA2 in the left 

inferior parietal region (Fig. 1, Table 4). This region remained significant in our secondary 

analysis using PD dementia status as an additional covariate. In the SVC analysis, only AD 

had a significant relationship between HOMA2 and medial temporal lobe volume; HOMA2 

was associated with less GMV in the bilateral hippocampal/parahippocampal cortices (p < .

05 FWE corrected).

Motor function and cognitive testing

Higher HOMA2 was associated with lower UPDRS score (B = −0.823, p = 0.002). Higher 

fasting insulin (B = −0.824, p = 0.002) and increased β-cell function (%B, B = −0.759, p = 

0.008) were also associated with lower UPDRS score, while higher fasting glucose was not 
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(B = −0.260, p = 0.358). On cognitive testing, AD and PD subjects scored worse than 

controls overall (global cognition) and on tests of memory and executive function (p < 0.05 

for all, Table 1). Only AD subjects performed more poorly than controls on tests of 

language, and AD subjects also performed worse than PD individuals on tests of memory 

and language. Scores did not differ on tests of attention across groups. We also examined the 

relationship between HOMA2 and global cognition, but there was no correlation between 

insulin resistance and cognitive function in any groups.

Medication use

We examined the use of medications to assess the possible impact on our findings. There 

was no difference in the use of statins, selective serotonin reuptake inhibitors (SSRI’s), or 

NMDA receptor agonists between groups. As expected, significantly more PD individuals 

used Levodopa (90.9%; p < 0.001) and Dopamine receptor agonists (31.8%; p < 0.001) than 

other groups (no ND or AD subjects used these medications). On the contrary, more AD 

subjects used competitive cholinesterase inhibitors (77.3%) compared to PD subjects 

(27.3%) or ND subjects (0%; p < 0.001).

DISCUSSION

This study characterized insulin resistance in AD, PD, and apparently healthy control 

subjects. We found that both groups of subjects with neurodegenerative disease exhibited 

higher HOMA2 compared to HC subjects. However, that is where the metabolic similarities 

end. Insulin resistance precedes increased glucose levels (Martin et al., 1992), and 

individuals are classified with “impaired fasting glucose” at levels of ≥ 100 mg/dL (Genuth 

et al., 2003). In our study, only the AD group reached that cut-point (Table 1). Although 

both AD and PD groups exhibited increased fasting insulin levels, only PD subjects had a 

significant increase in beta cell function (%B). Enhanced beta cell function and increased 

insulin secretion allows normoglycemia to be maintained in response to insulin resistance 

(Prentki and Nolan, 2006). Because the AD group overall exhibited hyperglycemia, while 

PD subjects did not, the compensatory increase in fasting insulin levels in the AD group was 

not sufficient to normalize glucose levels. A greater increase in beta cell function would be 

necessary to normalize glycemia in AD, and indicates that this group exhibits greater 

metabolic dysfunction than the PD group. Fasting metabolic data are supported by glucose 

tolerance analyses. We observed that the AD group had a significantly higher gAUC than 

the PD group. On the contrary, PD subjects exhibited a significantly higher iAUC than both 

AD and HC subjects. This supports our observation of more severe metabolic impairment in 

the AD group vs. a more mild metabolic impairment managed through compensatory insulin 

secretion in PD.

The degree to which peripheral insulin resistance affects brain insulin resistance is unknown. 

However, a direct effect of peripheral insulin resistance on the brain is likely due in part to 

the fact that insulin is involved in cell growth and survival, insulin can readily cross the 

blood–brain barrier at physiological concentrations (Banks, 2004), and markers of insulin 

resistance have been shown in the brain of individuals with AD (Talbot et al., 2012). In 

addition to its known role in peripheral glucose metabolism, studies indicate that insulin is 
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involved in neurotransmission, cell survival, and amyloid trafficking (Wan et al., 1997; 

Gasparini et al., 2001; Skeberdis et al., 2001; van der Heide et al., 2006; Jin et al., 2011). 

Thus, to determine whether peripheral insulin resistance was related to brain volume in 

neurodegenerative disease, we analyzed the relationship between insulin resistance 

(HOMA2) and GMV.

In AD subjects, increased HOMA2 was associated with less GMV in medial temporal brain 

regions. Within the HC group, we similarly saw that HOMA2 was associated with less 

GMV, but in frontal cortex. Our findings complement a recent study which reported that, 

among other regions, the prefrontal and cingulate cortices had less GMV associated with 

higher HOMA2 in HC individuals (Willette et al., 2013). We did not see a relationship 

between temporal cortex gray matter and HOMA2 in our elderly group, unlike a recent 

report by Benedict et al. (2012). However, their cohort was larger (n = 285) and older (mean 

age 75 years) than ours. Our smaller (n = 21) and younger group (mean age 71.7 years) may 

have limited our power to detect smaller relationships between gray matter and insulin 

resistance in cognitively normal subjects.

When the relationship between HOMA2 and GMV was examined in PD, HOMA2 was 

associated with greater GMV in the left inferior parietal region. Thus, within the PD group, 

subjects with greater HOMA2 (and greater compensatory beta cell function) had the highest 

GMV while subjects with lower HOMA2 had less GMV in this region. This is the first study 

to analyze the relationship between insulin resistance and GMV in PD, thus we have no 

comparison for discussion. However, over-activity of the parietal region has been postulated 

to occur in PD as a mechanism for circumventing impaired circuits in the basal ganglia. For 

instance, during performance of motor tasks (finger movement), the parietal cortex was 

overactive in PD subjects compared to controls (Samuel et al., 1997). More recently, 

connections between the parietal cortex and the cerebellum, pre-motor cortex, and rostral 

supplementary motor area were shown to be increased in PD compared to controls (Wu et 

al., 2011), and non-dysphagic PD patients have shown a shift in activation in brain areas 

including the parietal cortex to compensate for impairment in other motor regions (Suntrup 

et al., 2013). Although glucose uptake in the brain is primarily insulin-independent in 

healthy individuals, insulin-dependent glucose uptake may occur in subjects who are insulin 

resistant (Hirvonen et al., 2011). Our finding of a positive correlation between insulin 

resistance (with high compensatory insulin secretion) and parietal volume suggests the 

potential importance of insulin signaling in a brain region that is important in circumventing 

damaged networks in the basal ganglia.

The current study used an unbiased, voxel-based approach and revealed that in early AD, 

HOMA2 is associated with less brain volume in the bilateral medial temporal cortex, as well 

as the temporal and parietal cortices This corroborates our previous ROI approach (Burns et 

al., 2007) and extends it to other regions where pathologic changes occur early in AD (Braak 

and Braak, 1991). We further extended our previous findings by evaluating insulin 

resistance and evaluating PD subjects. However, our results are limited by our small sample 

size and cross-sectional data, thus future studies with larger groups and longitudinal study 

designs will be necessary to understand these relationships. We also excluded diabetic 

subjects (clinical diagnosis or use of an anti-diabetic agent) due to the potential confounding 
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effect of diabetic medication on a primary outcome measure (HOMA2). Given that diabetes 

is a risk factor for AD, exclusion of individuals with severe insulin resistance may have 

affected our ability to detect a relationship between HOMA2 and cognition. Diabetes status 

has not been shown to affect the relationship between HOMAIR and GMV in nondemented 

subjects (Benedict et al., 2012; Willette et al., 2013), but future studies that assess these 

relationships in diabetic subjects with neurodegenerative disease are needed.

We did not discriminate between PD and PDD, but rather included all PD individuals into a 

single PD group regardless of dementia status. The reported prevalence of dementia in PD 

varies widely. It has been shown that on average over 30% of PD subjects exhibit dementia 

(Aarsland et al., 2005), but that this number skyrockets to over 75% when individuals are 

followed longitudinally (Aarsland et al., 2003). Because the majority of PD subjects will 

develop cognitive impairment over time following PD diagnosis, we considered them as a 

single cohort. Larger studies are necessary to discern if the relationship between metabolic 

function and GMV differs between PD and PDD. An additional limitation of our study was 

that we analyzed only the relationship between HOMA2 and GMV. Future studies regarding 

the relationship between insulin resistance and WMV are warranted. Finally, another factor 

that may play into our findings of increased insulin resistance in neurodegenerative disease 

is the use of medications in these groups. PD subjects more frequently used levodopa and 

dopamine agonists, while AD subjects more often used cholinesterase inhibitors than other 

groups; thus, their effect cannot be ruled out.

CONCLUSION

Insulin resistance is increased in non-diabetic AD and PD subjects compared to cognitively 

normal controls; however, individuals with AD appear to have more severe metabolic 

dysfunction. HOMA2 was associated with GMV in all groups, but the brain region and 

directionality of this association differs by diagnosis. Within groups, higher insulin 

resistance was associated with decreased GMV in healthy control (medial prefrontal) and 

AD (medial temporal) groups, but increased GMV in PD (parietal) subjects. Our study 

suggests that the relationship between insulin resistance and brain volume differs between 

normal aging and neurodegenerative disease. This may be due to differences between aging 

and disease processes, differing severity of metabolic dysregulation, or a combination of 

both factors. Our study supports a potential relationship between insulin resistance and brain 

structure in both normal aging and diagnosed neurodegenerative disease.
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Abbreviations

AD Alzheimer’s disease

CDR Clinical Dementia Rating

DARTEL Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra

gAUC glucose area under the curve

GMV gray matter volume

HC healthy elderly control

HOMA2 homeostasis model assessment of insulin resistance 2

iAUC insulin area under the curve

IVGTT intravenous glucose tolerance test

PD Parkinson’s disease

SVC small-volume correction

TICV total-intracranial volume

UPDRS Unified Parkinson’s Disease Rating Scale

WMV white matter volume
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Fig. 1. 
Relationship between higher HOMA2 and regional gray matter volume at cross-section in 

healthy control, AD, and PD individuals. The color bar represents t values. Statistical 

parametric maps are overlaid on a canonical brain image. Cross-hairs are on the most 

significant cluster from the HOMA2 regression. Significant clusters from these three 

analyses were extracted and plotted against raw HOMA2 values for visual purposes. The 

coordinates for our voxel-based morphometry results are presented in MNI space. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Table 2

Metabolic differences between diagnosis groups

Measure HC
N = 21

AD
N = 20

PD
N = 22

Significance (p-value)

Weight (kg) 74.1 (14.5) 73.2 (15.6) 77.0 (17.9) 0.812

BMI 26.1 (3.8) 25.3 (5.4) 26.6 (3.4) 0.814

Systolic BP 125.6 (21.5) 136.6 (22.3) 121.0 (15.5) 0.028$

Diastolic BP 72.7 (9.1) 73.6 (8.6) 73.4 (9.8) 0.814

Hypertensive subjects (#, %) 5 (23.8%) 7 (33.3%) 3 (13.6%) 0.313

HOMA2 (Insulin Resistance) 1.45 (0.54) 2.15 (.81) 2.04 (0.69) 0.004*,#

Fasting Glucose (mg/dL) 93.4 (4.6) 102.4 (14.5) 92.1 (6.3) <0.001*,$

Fasting Insulin (μU/mL) 10.95 (4.3) 16.25 (5.9) 15.8 (5.5) 0.002*,#

% B (Beta cell function) 112.6 (30.6) 128.4 (36.3) 146.8 (31.7) 0.03#

2-h Glucose AUC (gAUC) 16174.6 (1674) 17771.1 (3323) 15868.6 (2163.8) 0.017$

2-h Insulin AUC (iAUC) 3126 (1559) 3613 (1360) 4509.1 (1940.4) 0.038#

Metabolic differences between diagnosis groups. Significance reflects the overall p-value for ANOVA controlling for age, sex, and education. 
Symbols denote differences between groups assessed post hoc.

‡
1 PD subject was unable to complete the scan sequence, thus structural data contain data from 21 PD subjects. p < 0.05.

*
HC vs. AD.

#
HC vs. PD.

$
AD vs. PD.
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