73 research outputs found

    Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes

    Get PDF
    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This “microbial dark matter” represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum “Calescamantes” (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.This work was supported by NASA exobiology grant EXO-NNX11AR78G, U.S. National Science Foundation grant OISE 0968421, and U.S. Department of Energy grant DE-EE-0000716. B.P.H. acknowledges generous support from Greg Fullmer through the UNLV Foundation, and W.S. acknowledges Northern Illinois University for funding. B.P.H and S.K.M. acknowledge support from an Amazon Web Services Education Research Grant award. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This article is made openly accessible in part by an award from the Northern Illinois University Libraries’ Open Access Publishing Fund

    Starve to Sustain - An Ancient Syrian Landrace of Sorghum as Tool for Phosphorous Bio-Economy?

    Get PDF
    Phosphorus (P) is an essential macronutrient, playing a role in developmental and metabolic processes in plants. To understand the local and systemic responses of sorghum to inorganic phosphorus (Pi) starvation and the potential of straw and ash for reutilisation in agriculture, we compared two grain (Razinieh) and sweet (Della) sorghum varieties with respect to their morpho-physiological and molecular responses. We found that Pi starvation increased the elongation of primary roots, the formation of lateral roots, and the accumulation of anthocyanin. In Razinieh, lateral roots were promoted to a higher extent, correlated with a higher expression of SbPht1 phosphate transporters. Infrared spectra of straw from mature plants raised to maturity showed two prominent bands at 1371 and 2337 cm−1, which could be assigned to P-H(H2) stretching vibration in phosphine acid and phosphinothious acid, and their derivates, whose abundance correlated with phosphate uptake of the source plant and genotype (with a higher intensity in Razinieh). The ash generated from these straws stimulated the shoot elongation and root development of the rice seedlings, especially for the material derived from Razinieh raised under Pi starvation. In conclusion, sorghum growing on marginal lands has potential as a bio-economy alternative for mineral phosphorus recycling

    Efficacy and safety of the second in-hospital dose of tranexamic acid after receiving the prehospital dose: double-blind randomized controlled clinical trial in a level 1 trauma center

    Get PDF
    Background: Prehospital administration of tranexamic acid (TXA) to injured patients is increasing worldwide. However, optimal TXA dose and need of a second infusion on hospital arrival remain undetermined. We investigated the efficacy and safety of the second in-hospital dose of TXA in injured patients receiving 1 g of TXA in the prehospital setting. We hypothesized that a second in-hospital dose of TXA improves survival of trauma patients. Methods: A prospective, double-blind, placebo-controlled randomized, clinical trial included adult trauma patients receiving 1 g of TXA in the prehospital settings. Patients were then blindly randomized to Group I (second 1-g TXA) and Group II (placebo) on hospital arrival. The primary outcome was 24-h (early) and 28-day (late) mortality. Secondary outcomes were thromboembolic events, blood transfusions, hospital length of stay (HLOS) and organs failure (MOF). Results: A total of 220 patients were enrolled, 110 in each group. The TXA and placebo groups had a similar early [OR 1.000 (0.062–16.192); p = 0.47] and late mortality [OR 0.476 (95% CI 0.157–1.442), p = 0.18].The cause of death (n = 15) was traumatic brain injury (TBI) in 12 patients and MOF in 3 patients. The need for blood transfusions in the first 24 h, number of transfused blood units, HLOS, thromboembolic events and multiorgan failure were comparable in the TXA and placebo groups. In seriously injured patients (injury severity score > 24), the MTP activation was higher in the placebo group (31.3% vs 11.10%, p = 0.13), whereas pulmonary embolism (6.9% vs 2.9%, p = 0.44) and late mortality (27.6% vs 14.3%, p = 0.17) were higher in the TXA group but did not reach statistical significance. Conclusion: The second TXA dose did not change the mortality rate, need for blood transfusion, thromboembolic complications, organ failure and HLOS compared to a single prehospital dose and thus its routine administration should be revisited in larger and multicenter studies. Trial registration: ClinicalTrials.gov Identifier: NCT03846973

    A Communal Catalogue Reveals Earth\u27s Multiscale Microbial Diversity

    Get PDF
    Our growing awareness of the microbial world\u27s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth\u27s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Haemolymph removal by Varroa

    No full text

    Novel Exons and Splice Variants in the Human Antibody Heavy Chain Identified by Single Cell and Single Molecule Sequencing

    No full text
    <div><p>Antibody heavy chains contain a variable and a constant region. The constant region of the antibody heavy chain is encoded by multiple groups of exons which define the isotype and therefore many functional characteristics of the antibody. We performed both single B cell RNAseq and long read single molecule sequencing of antibody heavy chain transcripts and were able to identify novel exons for IGHA1 and IGHA2 as well as novel isoforms for IGHM antibody heavy chain.</p></div
    • 

    corecore