224 research outputs found

    A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel

    Get PDF
    The viscosity-temperature relation is determined for the water models SPC/E, TIP4P, TIP4P/Ew, and TIP4P/2005 by considering Poiseuille flow inside a nano-channel using molecular dynamics. The viscosity is determined by fitting the resulting velocity profile (away from the walls) to the continuum solution for a Newtonian fluid and then compared to experimental values. The results show that the TIP4P/2005 model gives the best prediction of the viscosity for the complete range of temperatures for liquid water, and thus it is the preferred water model of these considered here for simulations where the magnitude of viscosity is crucial. On the other hand, with the TIP4P model, the viscosity is severely underpredicted, and overall the model performed worst, whereas the SPC/E and TIP4P/Ew models perform moderately

    Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface

    Get PDF
    Dry, frictional, steady-state granular flows down an inclined, rough surface are studied with discrete particle simulations. From this exemplary flow situation, macroscopic fields, consistent with the conservation laws of continuum theory, are obtained from microscopic data by time-averaging and spatial smoothing (coarse-graining). Two distinct coarse-graining length scale ranges are identified, where the fields are almost independent of the smoothing length w. The smaller, sub-particle length scale, w ≪ d, resolves layers in the flow near the base boundary that cause oscillations in the macroscopic fields. The larger, particle length scale, w ≈ d, leads to smooth stress and density fields, but the kinetic stress becomes scale-dependent; however, this scale-dependence can be quantified and removed. The macroscopic fields involve density, velocity, granular temperature, as well as strain-rate, stress, and fabric (structure) tensors. Due to the plane strain flow, each tensor can be expressed in an inherently anisotropic form with only four objective, coordinate frame invariant variables. For example, the stress is decomposed as: (i) the isotropic pressure, (ii) the “anisotropy” of the deviatoric stress, i.e., the ratio of deviatoric stress (norm) and pressure, (iii) the anisotropic stress distribution between the principal directions, and (iv) the orientation of its eigensystem. The strain rate tensor sets the reference system, and each objective stress (and fabric) variable can then be related, via discrete particle simulations, to the inertial number, I. This represents the plane strain special case of a general, local, and objective constitutive model. The resulting model is compared to existing theories and clearly displays small, but significant deviations from more simplified theories in all variables – on both the different length scales

    Genetic Characterization of a Core Set of a Tropical Maize Race TuxpeĂąo for Further Use in Maize Improvement

    Get PDF
    The tropical maize race TuxpeĂąo is a well-known race of Mexican dent germplasm which has greatly contributed to the development of tropical and subtropical maize gene pools. In order to investigate how it could be exploited in future maize improvement, a panel of maize germplasm accessions was assembled and characterized using genome-wide Single Nucleotide Polymorphism (SNP) markers. This panel included 321 core accessions of TuxpeĂąo race from the International Maize and Wheat Improvement Center (CIMMYT) germplasm bank collection, 94 CIMMYT maize lines (CMLs) and 54 U.S. Germplasm Enhancement of Maize (GEM) lines. The panel also included other diverse sources of reference germplasm: 14 U.S. maize landrace accessions, 4 temperate inbred lines from the U.S. and China, and 11 CIMMYT populations (a total of 498 entries with 795 plants). Clustering analyses (CA) based on Modified Rogers Distance (MRD) clearly partitioned all 498 entries into their corresponding groups. No sub clusters were observed within the TuxpeĂąo core set. Various breeding strategies for using the TuxpeĂąo core set, based on grouping of the studied germplasm and genetic distance among them, were discussed. In order to facilitate sampling diversity within the TuxpeĂąo core, a minicore subset of 64 TuxpeĂąo accessions (20% of its usual size) representing the diversity of the core set was developed, using an approach combining phenotypic and molecular data. Untapped diversity represents further use of the TuxpeĂąo landrace for maize improvement through the core and/or minicore subset available to the maize community

    Plautus and Terence in Their Roman Contexts

    Get PDF
    • …
    corecore