733 research outputs found
A cloud robotics architecture for an emergency management and monitoring service in a smart cityenvironment
Cloud robotics is revolutionizing not only the robotics industry but also the ICT world, giving robots more storage and computing capacity, opening new scenarios that blend the physical to the digital world. In this vision new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. In this paper a possible implementation of a cloud robotics architecture for the interaction between users and UAVs is described. Using the latter as monitoring agents, a service for fighting crime in urban environment is proposed, making one step forward towards the idea of smart cit
Recommended from our members
Improved bend waveguide design for terahertz transmission
Bending waveguides with 90 corners based on a two-dimensional photonic crystal with metallic cylinders arranged in a square lattice are studied for THz wave guiding. Considering single- and double-line defects, five different designs are investigated and assessed in terms of their transmission performance. A better structure is proposed by increasing the number of rods in the
bending arc, thus achieving superior performance of the transmission characteristics in comparison to that of the former five designs.
A comparison of the improved bend waveguide with a linear wave-guide shows a significant reduction of the bending losses. Trans-mission levels of up to 98% within a 2.5 THz bandwidth (from 1.2 to 3.7 THz) have been accomplished
Caracterização morfofisiológica e patogênica de isolados de Sphaeropsis sapinea e avaliação de resistência em Pinus radiata.
Resumo
Renormalization of Quantum Anosov Maps: Reduction to Fixed Boundary Conditions
A renormalization scheme is introduced to study quantum Anosov maps (QAMs) on
a torus for general boundary conditions (BCs), whose number () is always
finite. It is shown that the quasienergy eigenvalue problem of a QAM for {\em
all} BCs is exactly equivalent to that of the renormalized QAM (with
Planck's constant ) at some {\em fixed} BCs that can
be of four types. The quantum cat maps are, up to time reversal, fixed points
of the renormalization transformation. Several results at fixed BCs, in
particular the existence of a complete basis of ``crystalline'' eigenstates in
a classical limit, can then be derived and understood in a simple and
transparent way in the general-BCs framework.Comment: REVTEX, 12 pages, 1 table. To appear in Physical Review Letter
Chaotic Diffusion on Periodic Orbits: The Perturbed Arnol'd Cat Map
Chaotic diffusion on periodic orbits (POs) is studied for the perturbed
Arnol'd cat map on a cylinder, in a range of perturbation parameters
corresponding to an extended structural-stability regime of the system on the
torus. The diffusion coefficient is calculated using the following PO formulas:
(a) The curvature expansion of the Ruelle zeta function. (b) The average of the
PO winding-number squared, , weighted by a stability factor. (c) The
uniform (nonweighted) average of . The results from formulas (a) and (b)
agree very well with those obtained by standard methods, for all the
perturbation parameters considered. Formula (c) gives reasonably accurate
results for sufficiently small parameters corresponding also to cases of a
considerably nonuniform hyperbolicity. This is due to {\em uniformity sum
rules} satisfied by the PO Lyapunov eigenvalues at {\em fixed} . These sum
rules follow from general arguments and are supported by much numerical
evidence.Comment: 6 Tables, 2 Figures (postscript); To appear in Physical Review
Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover
Understanding spatial variation in the structure and stability of plant-pollinator networks, and their relationship with anthropogenic drivers, is key to maintaining pollination services and mitigating declines. Constructing sufficient networks to examine patterns over large spatial scales remains challenging. Using biological records (citizen science), we constructed potential plant-pollinator networks at 10km resolution across Great Britain, comprising all potential interactions inferred from recorded floral visitation and species co-occurrence. We calculated network metrics (species richness, connectance, pollinator and plant generality) and adapted existing methods to assess robustness to sequences of simulated plant extinctions across multiple networks. We found positive relationships between agricultural land cover and both pollinator generality and robustness to extinctions under several extinction scenarios. Increased robustness was attributable to changes in plant community composition (fewer extinction-prone species) and network structure (increased pollinator generality). Thus, traits enabling persistence in highly agricultural landscapes can confer robustness to potential future perturbations on plant-pollinator networks
A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary
We report the discovery of a highly eccentric, double-lined spectroscopic
binary star system (TYC 3010-1494-1), comprising two solar-type stars that we
had initially identified as a single star with a brown dwarf companion. At the
moderate resolving power of the MARVELS spectrograph and the spectrographs used
for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular
stellar binary mimics a single-lined binary with an RV signal that would be
induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary.
At least three properties of this system allow it to masquerade as a single
star with a very low-mass companion: its large eccentricity (e~0.8), its
relatively long period (P~238 days), and the approximately perpendicular
orientation of the semi-major axis with respect to the line of sight (omega~189
degrees). As a result of these properties, for ~95% of the orbit the two sets
of stellar spectral lines are completely blended, and the RV measurements based
on centroiding on the apparently single-lined spectrum is very well fit by an
orbit solution indicative of a brown dwarf companion on a more circular orbit
(e~0.3). Only during the ~5% of the orbit near periastron passage does the
true, double-lined nature and large RV amplitude of ~15 km/s reveal itself. The
discovery of this binary system is an important lesson for RV surveys searching
for substellar companions; at a given resolution and observing cadence, a
survey will be susceptible to these kinds of astrophysical false positives for
a range of orbital parameters. Finally, for surveys like MARVELS that lack the
resolution for a useful line bisector analysis, it is imperative to monitor the
peak of the cross-correlation function for suspicious changes in width or
shape, so that such false positives can be flagged during the candidate vetting
process.Comment: 16 pages, 11 figures, 6 table
A tolerance analysis and optimization methodology: the combined use of 3D CAT, a dimensional hierarchization matrix and an optimization algorithm
We propose a methodology in this study for the analysis and the optimization of assembly tolerances. A combination of three components, it involves the use of 3D CAT software, a table referred to as a “dimensional hierarchization matrix” and a tolerance optimization algorithm. The Antolin Group, a Spanish multinational in the automobile components sector, employs this system to optimize tolerance values and to reduce manufacturing costs. The matrix was designed to enable easy identification, in a single table, of all requirements that fail to meet the specifications in the different approximations, prior to the definition of the dimensional and the geometric tolerances that comply with the functional requirements, and to identify which tolerances contribute most to variations in all of the functional conditions of the mechanism. Through its different iterations, this matrix allows us to see which of the tolerances should first be modified to optimize the design requirement specifications. A tolerance optimization algorithm was also defined, which functions with the data from the dimensional hierarchization matrix
Very Low Mass Stellar and Substellar Companions to Solar-Like Stars From MARVELS V: A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b
We describe the discovery of a likely brown dwarf (BD) companion with a
minimum mass of 31.7 +/- 2.0 M_Jup to GSC 03546-01452 from the MARVELS radial
velocity survey, which we designate as MARVELS-6b. For reasonable priors, our
analysis gives a probability of 72% that MARVELS-6b has a mass below the
hydrogen-burning limit of 0.072 M_Sun, and thus it is a high-confidence BD
companion. It has a moderately long orbital period of 47.8929 +0.0063/-0.0062
days with a low eccentricty of 0.1442 +0.0078/-0.0073, and a semi-amplitude of
1644 +12/-13 m/s. Moderate resolution spectroscopy of the host star has
determined the following parameters: T_eff = 5598 +/- 63, log g = 4.44 +/-
0.17, and [Fe/H] = +0.40 +/- 0.09. Based upon these measurements, GSC
03546-01452 has a probable mass and radius of M_star = 1.11 +/- 0.11 M_Sun and
R_star = 1.06 +/- 0.23 R_Sun with an age consistent with less than ~6 Gyr at a
distance of 219 +/- 21 pc from the Sun. Although MARVELS-6b is not observed to
transit, we cannot definitively rule out a transiting configuration based on
our observations. There is a visual companion detected with Lucky Imaging at
7.7 arcsec from the host star, but our analysis shows that it is not bound to
this system. The minimum mass of MARVELS-6b exists at the minimum of the mass
functions for both stars and planets, making this a rare object even compared
to other BDs.Comment: 15 pages, 15 figures, 5 tables. Accepted for publication in The
Astronomical Journa
- …
