Chaotic diffusion on periodic orbits (POs) is studied for the perturbed
Arnol'd cat map on a cylinder, in a range of perturbation parameters
corresponding to an extended structural-stability regime of the system on the
torus. The diffusion coefficient is calculated using the following PO formulas:
(a) The curvature expansion of the Ruelle zeta function. (b) The average of the
PO winding-number squared, w2, weighted by a stability factor. (c) The
uniform (nonweighted) average of w2. The results from formulas (a) and (b)
agree very well with those obtained by standard methods, for all the
perturbation parameters considered. Formula (c) gives reasonably accurate
results for sufficiently small parameters corresponding also to cases of a
considerably nonuniform hyperbolicity. This is due to {\em uniformity sum
rules} satisfied by the PO Lyapunov eigenvalues at {\em fixed} w. These sum
rules follow from general arguments and are supported by much numerical
evidence.Comment: 6 Tables, 2 Figures (postscript); To appear in Physical Review