59 research outputs found

    Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific

    Get PDF
    Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming. © 2021 The AuthorsThis study was supported by project FORMAL ( RTI2018-096884-B-C31 ) from the Spanish Ministry of Science, Innovation and Universities . GS-B was supported by a Spanish Ministry of Economy, Industry and Competitiveness Postdoctoral grant ( IJC2019-040571-I ; FEDER funds)

    What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both?

    Get PDF
    Scots pine forests subjected to continental Mediterranean climates undergo cold winter temperatures and drought stress. Recent climatic trends towards warmer and drier conditions across the Mediterranean Basin might render some of these pine populations more vulnerable to drought-induced growth decline at the Southernmost limit of the species distribution. We investigated how cold winters and dry growing seasons drive the radial growth of Scots pine subject to continental Mediterranean climates by relating growth to climate variables at local (elevational gradient) and regional (latitudinal gradient) scales. Local climate-growth relationships were quantified on different time scales (5-, 10- and 15-days) to evaluate the relative role of elevation and specific site characteristics. A negative water balance driven by high maximum temperatures in June (low-elevation sites) and July (high-elevation sites) was the major constraint on growth, particularly on a 5- to 10-day time scale. Warm nocturnal conditions in January were associated with wider rings at the high-elevation sites. At the regional scale, Scots pine growth mainly responded positively to July precipitation, with a stronger association at lower elevations and higher latitudes. January minimum temperatures showed similar patterns but played a secondary role as a driver of tree growth. The balance between positive and negative effects of summer precipitation and winter temperature on radial growth depends on elevation and latitude, with low-elevation populations being more prone to suffer drought and heat stress; whereas, high-elevation populations may be favoured by warmer winter conditions. This negative impact of summer heat and drought has increased during the past decades. This interaction between climate and site conditions and local adaptations is therefore decisive for the future performance and persistence of Scots pine populations in continental Mediterranean climates. Forecasting changes in the Scots pine range due to climate change should include this site-related information to obtain more realistic predictions, particularly in Mediterranean rear-edge areas

    Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth

    Get PDF
    Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.Peer reviewe

    What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both?

    Get PDF
    Sánchez-Salguero, R. et al.- 37 páginasScots pine forests subjected to continental Mediterranean climates undergo cold winter temperatures and drought stress. Recent climatic trends towards warmer and drier conditions across the Mediterranean Basin might render some of these pine populations more vulnerable to drought-induced growth decline at the Southernmost limit of the species distribution. We investigated how cold winters and dry growing seasons drive the radial growth of Scots pine subject to continental Mediterranean climates by relating growth to climate variables at local (elevational gradient) and regional (latitudinal gradient) scales. Local climate-growth relationships were quantified on different time scales (5-, 10- and 15-days) to evaluate the relative role of elevation and specific site characteristics. A negative water balance driven by high maximum temperatures in June (low-elevation sites) and July (high-elevation sites) was the major constraint on growth, particularly on a 5- to 10-day time scale. Warm nocturnal conditions in January were associated with wider rings at the high-elevation sites. At the regional scale, Scots pine growth mainly responded positively to July precipitation, with a stronger association at lower elevations and higher latitudes. January minimum temperatures showed similar patterns but played a secondary role as a driver of tree growth. The balance between positive and negative effects of summer precipitation and winter temperature on radial growth depends on elevation and latitude, with low-elevation populations being more prone to suffer drought and heat stress; whereas, high-elevation populations may be favoured by warmer winter conditions. This negative impact of summer heat and drought has increased during the past decades. This interaction between climate and site conditions and local adaptations is therefore decisive for the future performance and persistence of Scots pine populations in continental Mediterranean climates. Forecasting changes in the Scots pine range due to climate change should include this site-related information to obtain more realistic predictions, particularly in Mediterranean rear-edge areas. © 2015 Elsevier B.V.We were glad to be able to use the E-OBS dataset (EU- project ENSEMBLES) and the data providers in the ECA&D project (http://www.ecad.eu), and thank Dr. Geert Jan van Oldenborgh for his assistance with these data. We are grateful to the researchers who provided data on the International Tree-Ring Data Bank. This study was funded by the projects CoMo-ReAdapt (CGL2013-48843-C2-1-R) and FORRISK (Interreg IV B SUDOE 2007-2013). The authors thank CENEAM, Montes de Valsaín and OAPN and all participants involved in the International Tree-Ring Summer School carried out in 2012 in Valsaín (Segovia-Spain), especially to Kenza Garah, María Tabakova, Virginia Garófano-Gómez and Clara Rodriguez-Morata. R. Sánchez-Salguero is grateful for the financial support of University of Córdoba-Campus de Excelencia ceiA3 and “Fondo Europeo de Desarrollo Regional (FEDER)-Programa de Fortalecimiento de las capacidades en I + D + i de las Universidades 2014–2015, Junta de Andalucía”. We are grateful to Silvia Dingwall for the language review. This work has been carried out under the framework of the COST FP1106 network STReESS.Peer Reviewe
    • …
    corecore