250 research outputs found

    Calcium Binding Properties of the Kingella kingae PilC1 and PilC2 Proteins Have Differential Effects on Type IV Pilus-Mediated Adherence and Twitching Motility

    Get PDF
    Kingella kingae is an emerging bacterial pathogen that is being recognized increasingly as an important etiology of septic arthritis, osteomyelitis, and bacteremia, especially in young children. The pathogenesis of K. kingae disease begins with bacterial adherence to respiratory epithelium, which is dependent on type IV pili and is influenced by two PilC-like proteins called PilC1 and PilC2. Production of either PilC1 or PilC2 is necessary for K. kingae piliation and bacterial adherence. In this study, we set out to further investigate the role of PilC1 and PilC2 in type IV pilus-associated phenotypes. We found that PilC1 contains a functional 9-amino-acid calcium-binding (Ca-binding) site with homology to the Pseudomonas aeruginosa PilY1 Ca-binding site and that PilC2 contains a functional 12-amino-acid Ca-binding site with homology to the human calmodulin Ca-binding site. Using targeted mutagenesis to disrupt the Ca-binding sites, we demonstrated that the PilC1 and PilC2 Ca-binding sites are dispensable for piliation. Interestingly, we showed that the PilC1 site is necessary for twitching motility and adherence to Chang epithelial cells, while the PilC2 site has only a minor influence on twitching motility and no influence on adherence. These findings establish key differences in PilC1 and PilC2 function in K. kingae and provide insights into the biology of the PilC-like family of proteins

    Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Fabry disease (α-galactosidase A deficiency) accumulation of Globotriaosylceramide (Gb3) leads to progressive organ failure and premature death. The introduction of enzyme replacement therapy (ERT) was the beginning of a new era in this disorder, and has prompted a broad range of research activities. This review aims to summarize recent developments and progress with high impact for Fabry disease.</p> <p>Methods</p> <p>A Pubmed analysis was performed using the search terms "Fabry disease", "Anderson-Fabry disease", "alpha-galactosidase A" and "Gb3". Of the given publications by 31st January 2009 only original articles recently published in peer reviewed journals were included for this review. Case reports were included only when they comprised a new aspect. In addition we included relevant conference abstracts when the results had not already been published as original articles.</p> <p>Results</p> <p>Apart from Gb3-accumulation cellular and organ specific damages may be related also to inflammatory and immunological consequences. It will be interesting whether this may lead to new therapeutic strategies in the treatment of Fabry disease. Since newborn screening is still difficult in Fabry disease, detection of patients in populations at risk is of great importance. Undiagnosed patients with Fabry disease may still be found in cohorts of subjects with renal diseases, cardiomyopathy and TIA or stroke. Efforts should be undertaken to identify these individuals and initialise ERT in order to hault disease progression. It has also been demonstrated that Gb3-accumulation leads to pre-clinical damages and it is believed that early treatment may be the only possibility so far to prevent irreversible organ damage.</p

    The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions

    Get PDF
    In this comprehensive review, we report on the preparation of graft-copolymers of cellulose and cellulose derivatives using atom transfer radical polymerization (ATRP) under homogeneous conditions. The review is divided into four sections according to the cellulosic material that is graft-copolymerised; (i) cellulose, (ii) ethyl cellulose, (iii) hydroxypropyl cellulose and (iv) other cellulose derivatives. In each section, the grafted synthetic polymers are described as well as the methods used for ATRP macro-initiator formation and graft-copolymerisation. The physical properties of the graft-copolymers including their self-assembly in solution into nanostructures and their stimuli responsive behaviour are described. Potential applications of the self-assembled graft copolymers in areas such as nanocontainers for drug delivery are outline

    So what do we really mean when we say that systems biology is holistic?

    Get PDF
    Background: An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. Results: Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. Conclusions: Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners

    Znf202 Affects High Density Lipoprotein Cholesterol Levels and Promotes Hepatosteatosis in Hyperlipidemic Mice

    Get PDF
    Background: The zinc finger protein Znf202 is a transcriptional suppressor of lipid related genes and has been linked to hypoalphalipoproteinemia. A functional role of Znf202 in lipid metabolism in vivo still remains to be established. Methodology and Principal Findings: We generated mouse Znf202 expression vectors, the functionality of which was established in several in vitro systems. Next, effects of adenoviral znf202 overexpression in vivo were determined in normo- as well as hyperlipidemic mouse models. Znf202 overexpression in mouse hepatoma cells mhAT3F2 resulted in downregulation of members of the Apoe/c1/c2 and Apoa1/c3/a4 gene cluster. The repressive activity of Znf202 was firmly confirmed in an apoE reporter assay and Znf202 responsive elements within the ApoE promoter were identified. Adenoviral Znf202 transfer to Ldlr-/- mice resulted in downregulation of apoe, apoc1, apoa1, and apoc3 within 24 h after gene transfer. Interestingly, key genes in bile flux (abcg5/8 and bsep) and in bile acid synthesis (cyp7a1) were also downregulated. At 5 days post-infection, the expression of the aforementioned genes was normalized, but mice had developed severe hepatosteatosis accompanied by hypercholesterolemia and hypoalphalipoproteinemia. A much milder phenotype was observed in wildtype mice after 5 days of hepatic Znf202 overexpression. Interestingly and similar to Ldl-/- mice, HDL-cholesterol levels in wildtype mice were lowered after hepatic Znf202 overexpression. Conclusion/Significance: Znf202 overexpression in vivo reveals an important role of this transcriptional regulator in liver lipid homeostasis, while firmly establishing the proposed key role in the control of HDL levels

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Sexual dimorphism in cancer.

    Get PDF
    The incidence of many types of cancer arising in organs with non-reproductive functions is significantly higher in male populations than in female populations, with associated differences in survival. Occupational and/or behavioural factors are well-known underlying determinants. However, cellular and molecular differences between the two sexes are also likely to be important. In this Opinion article, we focus on the complex interplay that sex hormones and sex chromosomes can have in intrinsic control of cancer-initiating cell populations, the tumour microenvironment and systemic determinants of cancer development, such as the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life

    A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis

    Get PDF
    Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA–based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type–specific developmental gene expression patterns
    corecore