665 research outputs found

    Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae)

    Get PDF
    Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus

    Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process

    Get PDF
    International audienceAbstractCurrent treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk

    The Cost of Sex: Quantifying Energetic Investment in Gamete Production by Males and Females

    Get PDF
    The relative energetic investment in reproduction between the sexes forms the basis of sexual selection and life history theories in evolutionary biology. It is often assumed that males invest considerably less in gametes than females, but quantifying the energetic cost of gamete production in both sexes has remained a difficult challenge. For a broad diversity of species (invertebrates, reptiles, amphibians, fishes, birds, and mammals), we compared the cost of gamete production between the sexes in terms of the investment in gonad tissue and the rate of gamete biomass production. Investment in gonad biomass was nearly proportional to body mass in both sexes, but gamete biomass production rate was approximately two to four orders of magnitude higher in females. In both males and females, gamete biomass production rate increased with organism mass as a power law, much like individual metabolic rate. This suggests that whole-organism energetics may act as a primary constraint on gamete production among species. Residual variation in sperm production rate was positively correlated with relative testes size. Together, these results suggest that understanding the heterogeneity in rates of gamete production among species requires joint consideration of the effects of gonad mass and metabolism

    Structure of metal site in azurin, met 121 mutants of azurin, and stellacyanin investigated by 111m Cd Perturbed Angular Correlation (PAC)

    Get PDF
    The geometries of the metal sites in cadmium-substituted azurins have been investigated by Cd-111m perturbed angular correlation (PAC), The study includes wild type azurin as well as Met(121) mutants of azurin, where methionine has been substituted by Ala, Asn, Asp, Gin, Glu, and Leu.The nuclear quadrupole interaction of wild type azurin analyzed in the angular overlap model is well described as coordination of His(46), His(117), and Cys(112) and cannot be described by coordination of Met(121) and/or Gly(45).For most of the mutants, there exist two coordination geometries of the cadmium ion, With the exception of the Gau and Asp mutants, one of the conformations is similar to the wild type conformation. The other coordination geometries are either best described by a coordinating water molecule close to the original methionine position or by coordination by the substituting amino acid, These experiments show that even though the methionine does not coordinate it plays an important role for the geometry of the metal site.The nuclear quadrupole interaction of stellacyanin was also measured, The value resembles the most prominent nuclear quadrupole interaction of the Met(121) --> Gin mutant of Alcaligenes denitrificans azurin, indicating that the structures of the two metal sites are similar.Macromolecular Biochemistr

    Quantitative colorimetric-imaging analysis of nickel in iron meteorites

    Full text link
    A quantitative analytical imaging approach for determining the nickel content of metallic meteorites is proposed. The approach uses a digital image of a series of standard solutions of the nickel-dimethylglyoxime coloured chelate and a meteorite sample solution subjected to the same treatment as the nickel standards for quantitation. The image is processed with suitable software to assign a colour-dependent numerical value (analytical signal) to each standard. Such a value is directly proportional to the analyte concentration, which facilitates construction of a calibration graph where the value for the unknown sample can be interpolated to calculate the nickel content of the meteorite. The results thus obtained were validated by comparison with the official, ISO-endorsed spectrophotometric method for nickel. The proposed method is fairly simple and inexpensive; in fact, it uses a commercially available digital camera as measuring instrument and the images it provides are processed with highly user-friendly public domain software (specifically, ImageJ, developed by the National Institutes of Health and freely available for download on the Internet). In a scenario dominated by increasingly sophisticated and expensive equipment, the proposed method provides a cost-effective alternative based on simple, robust hardware that is affordable and can be readily accessed worldwide. This can be especially advantageous for countries were available resources for analytical equipment investments are scant. The proposed method is essentially an adaptation of classical chemical analysis to current, straightforward, robust, cost-effective instrumentation. © 2010 Elsevier B.V. All rights reserved.Lahuerta Zamora, L.; Alemán López, P.; Antón Fos, G.; Martín Algarra, R.; Mellado Romero, AM.; Martínez Calatayud, J. (2011). Quantitative colorimetric-imaging analysis of nickel in iron meteorites. Talanta. 83:1575-1579. doi:10.1016/j.talanta.2010.11.058S157515798
    • …
    corecore