110 research outputs found

    Development of a Multilayer MODIS IST-Albedo Product of Greenland

    Get PDF
    A new multilayer IST-albedo Moderate Resolution Imaging Spectroradiometer (MODIS) product of Greenland was developed to meet the needs of the ice sheet modeling community. The multiple layers of the product enable the relationship between IST and albedo to be evaluated easily. Surface temperature is a fundamental input for dynamical ice sheet models because it is a component of the ice sheet radiation budget and mass balance. Albedo influences absorption of incoming solar radiation. The daily product will combine the existing standard MODIS Collection-6 ice-surface temperature, derived melt maps, snow albedo and water vapor products. The new product is available in a polar stereographic projection in NetCDF format. The product will ultimately extend from March 2000 through the end of 2017

    An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula

    Get PDF
    Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events

    From working collections to the World Germplasm Project: agricultural modernization and genetic conservation at the Rockefeller Foundation

    Get PDF
    This paper charts the history of the Rockefeller Foundation’s participation in the collection and long-term preservation of genetic diversity in crop plants from the 1940s through the 1970s. In the decades following the launch of its agricultural program in Mexico in 1943, the Rockefeller Foundation figured prominently in the creation of world collections of key economic crops. Through the efforts of its administrators and staff, the foundation subsequently parlayed this experience into a leadership role in international efforts to conserve so-called plant genetic resources. Previous accounts of the Rockefeller Foundation’s interventions in international agricultural development have focused on the outcomes prioritized by foundation staff and administrators as they launched assistance programs and especially their characterization of the peoples and ‘‘problems’’ they encountered abroad. This paper highlights instead how foundation administrators and staff responded to a newly emergent international agricultural concern—the loss of crop genetic diversity. Charting the foundation’s responses to this concern, which developed only after agricultural modernization had begun and was understood to be produced by the successes of the foundation’s own agricultural assistance programs, allows for greater interrogation of how the foundation understood and projected its central position in international agricultural research activities by the 1970s.Research for this article was supported in part by a grant-in-aid from the Rockefeller Archive Center

    Sea-Level Rise: Projections for Maryland 2018

    Get PDF
    In fulfillment of requirements of the Maryland Commission on Climate Change Act of 2015, this report provides updated projections of the amount of sea-level rise relative to Maryland coastal lands that is expected into the next century. These projections represent the consensus of an Expert Group drawn from the Mid-Atlantic region. The framework for these projections is explicitly tied to the projections of global sea-level rise included in the Intergovernmental Panel on Climate Change Fifth Assessment (2014) and incorporates regional factors such as subsidence, distance from melting glaciers and polar ice sheets, and ocean currents. The probability distribution of estimates of relative sea-level rise from the baseline year of 2000 are provided over time and, after 2050, for three different greenhouse gas emissions pathways: Growing Emissions (RCP8.5), Stabilized Emissions (RCP4.5), and meeting the Paris Agreement (RCP2.6). This framework has been recently used in developing relative sea-level rise projections for California, Oregon, Washington, New Jersey, and Delaware as well as several metropolitan areas. The Likely range (66% probability) of the relative rise of mean sea level expected in Maryland between 2000 and 2050 is 0.8 to 1.6 feet, with about a one-in-twenty chance it could exceed 2.0 feet and about a one-in-one hundred chance it could exceed 2.3 feet. Later this century, rates of sea-level rise increasingly depend on the future pathway of global emissions of greenhouse gases during the next sixty years. If emissions continue to grow well into the second half of the 21st century, the Likely range of sea-level rise experienced in Maryland is 2.0 to 4.2 feet over this century, two to four times the sea-level rise experienced during the 20th century. Moreover, there is a one-in-twenty chance that it could exceed 5.2 feet. If, on the other hand, global society were able to bring net greenhouse gas emissions to zero in time to meet the goals of the Paris Climate Agreement and reduce emissions sufficient to limit the increase in global mean temperature to less than 2Celsius over pre-industrial levels, the Likely range for 2100 is 1.2 to 3.0 feet, with a one-in-twenty chance that it would exceed 3.7 feet. The difference in sea-level rise between these contrasting scenarios would diverge even more during the next century, with the failure to reduce emissions in the near term resulting in much greater sea-level rise 100 years from now. Moreover, recent research suggests that, without imminent and substantial reductions in greenhouse gas emissions, the loss of polar ice sheets-and thus the rate of sea-level rise-may be more rapid than assumed in these projections, particularly under the Growing Emissions scenario. These probabilistic sea-level rise projections can and should be used in planning and regulation, infrastructure siting and design, estimation of changes in tidal range and storm surge, developing inundation mapping tools, and adaptation strategies for high-tide flooding and saltwater intrusion

    Heirloom rice in Ifugao: an ‘anti-commodity’ in the process of commodification

    Get PDF
    We analyse the marketing of ‘heirloom rices’ produced in the Cordillera mountains of northern Luzon, the Philippines, as the commodification of a historical ‘anti-commodity’. We contend that, historically, rice was produced for social, cultural and spiritual purposes but not primarily for sale or trade. The Ifugaos were able to sustain terraced wet-rice cultivation within a system of ‘escape agriculture’ because they were protected from Spanish interference by the friction of terrain and distance. ‘Heirloom rice’ is a boundary concept that enables social entrepreneurs to commodify traditional landraces. We analyse the implications for local rice production and conservation efforts.Templeton Foundatio

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models

    Get PDF
    Projection of the contribution of ice sheets to sea level change as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the form of simulations from coupled ice sheet–climate models and stand-alone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea level change projections to be performed with stand-alone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice–ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 stand-alone ice sheet simulations, document the experimental framework and implementation, and present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss

    Increasing frequency and duration of Arctic winter warming events

    Get PDF
    Near-surface air temperatures close to 0°C were observed in situ over sea ice in the central Arctic during the last three winter seasons. Here we use in situ winter (December–March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. Observations of winter warming events exist over most of the Arctic Basin. Temperatures exceeding -5°C were observed during >30% of winters from 1954 to 2010 by North Pole drifting stations or ocean buoys. Using the ERA-Interim record (1979–2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > 10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). There is a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration
    corecore