99 research outputs found

    Sparse observations induce large biases in estimates of the global ocean CO2 sink: an ocean model subsampling experiment

    Get PDF
    Estimates of ocean CO2 uptake from global ocean biogeochemistry models and pCO2-based data products differ substantially, especially in high latitudes and in the trend of the CO2 uptake since 2000. Here, we assess the effect of data sparsity on two pCO2-based estimates by subsampling output from a global ocean biogeochemistry model. The estimates of the ocean CO2 uptake are improved from a sampling scheme that mimics present-day sampling to an ideal sampling scheme with 1000 evenly distributed sites. In particular, insufficient sampling has given rise to strong biases in the trend of the ocean carbon sink in the pCO2 products. The overestimation of the CO2 flux trend by 20-35% globally and 50-130% in the Southern Ocean with the present-day sampling is reduced to less than 15% with the ideal sampling scheme. A substantial overestimation of the decadal variability of the Southern Ocean carbon sink occurs in one product and appears related to a skewed data distribution in pCO2 space. With the ideal sampling, the bias in the mean CO2 flux is reduced from 9-12% to 2-9% globally and from 14-26% to 5-17% in the Southern Ocean. On top of that, discrepancies of about 0.4 PgC yr-1 (15%) persist due to uncertainties in the gas-exchange calculation. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'

    The reinvigoration of the Southern Ocean carbon sink

    Get PDF
    Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized

    Why do inverse models disagree? A case study with two European CO2 inversions

    Get PDF
    We present an analysis of atmospheric transport impact on estimating CO2 fluxes using two atmospheric inversion systems (CarboScope-Regional (CSR) and Lund University Modular Inversion Algorithm (LUMIA)) over Europe in 2018. The main focus of this study is to quantify the dominant drivers of spread amid CO2 estimates derived from atmospheric tracer inversions. The Lagrangian transport models STILT (Stochastic Time-Inverted Lagrangian Transport) and FLEXPART (FLEXible PARTicle) were used to assess the impact of mesoscale transport. The impact of lateral boundary conditions for CO2 was assessed by using two different estimates from the global inversion systems CarboScope (TM3) and TM5-4DVAR. CO2 estimates calculated with an ensemble of eight inversions differing in the regional and global transport models, as well as the inversion systems, show a relatively large spread for the annual fluxes, ranging between −0.72 and 0.20 PgC yr−1, which is larger than the a priori uncertainty of 0.47 PgC yr−1. The discrepancies in annual budget are primarily caused by differences in the mesoscale transport model (0.51 PgC yr−1), in comparison with 0.23 and 0.10 PgC yr−1 that resulted from the far-field contributions and the inversion systems, respectively. Additionally, varying the mesoscale transport caused large discrepancies in spatial and temporal patterns, while changing the lateral boundary conditions led to more homogeneous spatial and temporal impact. We further investigated the origin of the discrepancies between transport models. The meteorological forcing parameters (forecasts versus reanalysis obtained from ECMWF data products) used to drive the transport models are responsible for a small part of the differences in CO2 estimates, but the largest impact seems to come from the transport model schemes. Although a good convergence in the differences between the inversion systems was achieved by applying a strict protocol of using identical prior fluxes and atmospheric datasets, there was a non-negligible impact arising from applying a different inversion system. Specifically, the choice of prior error structure accounted for a large part of system-to-system differences.</p

    Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    Get PDF
    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO2), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO2 component (FFCO2) by high-precision radiocarbon (14C) analyses because FFCO2 is free of radiocarbon. Long-term observations of 14CO2 conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO2 component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO2. In this paper, we show that, depending on the remoteness of the site, changes of about 7–26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric 14CO2 measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO2 emissions changes in the framework of the Kyoto protocol and successive climate initiatives

    Data-based estimates of interannual sea-air CO2 flux variations 1957-2020 and their relation to environmental drivers

    Get PDF
    This study considers year-to-year and decadal variations in as well as secular trends of the sea-air CO2 flux over the 1957-2020 period, as constrained by the pCO(2) measurements from the SOCATv2021 database. In a first step, we relate interannual anomalies in ocean-internal carbon sources and sinks to local interannual anomalies in sea surface temperature (SST), the temporal changes in SST (dSST/dt), and squared wind speed (u(2)), employing a multi-linear regression. In the tropical Pacific, we find interannual variability to be dominated by dSST/dt, as arising from variations in the upwelling of colder and more carbon-rich waters into the mixed layer. In the eastern upwelling zones as well as in circumpolar bands in the high latitudes of both hemispheres, we find sensitivity to wind speed, compatible with the entrainment of carbon-rich water during wind-driven deepening of the mixed layer and wind-driven upwelling. In the Southern Ocean, the secular increase in wind speed leads to a secular increase in the carbon source into the mixed layer, with an estimated reduction in the sink trend in the range of 17 % to 42 %. In a second step, we combined the result of the multi-linear regression and an explicitly interannual pCO(2)-based additive correction into a "hybrid" estimate of the sea-air CO2 flux over the period 1957-2020. As a pCO(2) mapping method, it combines (a) the ability of a regression to bridge data gaps and extrapolate into the early decades almost void of pCO(2) data based on process-related observables and (b) the ability of an auto-regressive interpolation to follow signals even if not represented in the chosen set of explanatory variables. The "hybrid" estimate can be applied as an ocean flux prior for atmospheric CO2 inversions covering the whole period of atmospheric CO2 data since 1957

    A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data

    Get PDF
    We have developed a statistical gap-ïŹlling method adapted to the speciïŹc coverage and prop-erties of observed fugacity of surface ocean CO2(fCO2). We have used this method to interpolate the Sur-face Ocean CO2Atlas (SOCAT) v2 database on a 2.5832.58 global grid (south of 708N) for 1985–2011 atmonthly resolution. The method combines a spatial interpolation based on a ‘‘radius of inïŹ‚uence’’ to deter-mine nearby similar fCO2values with temporal harmonic and cubic spline curve-ïŹtting, and also ïŹts long-term trends and seasonal cycles. Interannual variability is established using deviations of observations fromthe ïŹtted trends and seasonal cycles. An uncertainty is computed for all interpolated values based on thespatial and temporal range of the interpolation. Tests of the method using model data show that it performsas well as or better than previous regional interpolation methods, but in addition it provides a near-globaland interannual coverage

    Global atmospheric CO₂ inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate

    Get PDF
    We have compared a suite of recent global CO₂ atmospheric inversion results to independent airborne observations and to each other, to assess their dependence on differences in northern extratropical (NET) vertical transport and to identify some of the drivers of model spread. We evaluate posterior CO₂ concentration profiles against observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) aircraft campaigns over the mid-Pacific in 2009–2011. Although the models differ in inverse approaches, assimilated observations, prior fluxes, and transport models, their broad latitudinal separation of land fluxes has converged significantly since the Atmospheric Carbon Cycle Inversion Intercomparison (TransCom 3) and the REgional Carbon Cycle Assessment and Processes (RECCAP) projects, with model spread reduced by 80 % since TransCom 3 and 70 % since RECCAP. Most modeled CO₂ fields agree reasonably well with the HIPPO observations, specifically for the annual mean vertical gradients in the Northern Hemisphere. Northern Hemisphere vertical mixing no longer appears to be a dominant driver of northern versus tropical (T) annual flux differences. Our newer suite of models still gives northern extratropical land uptake that is modest relative to previous estimates (Gurney et al., 2002; Peylin et al., 2013) and near-neutral tropical land uptake for 2009–2011. Given estimates of emissions from deforestation, this implies a continued uptake in intact tropical forests that is strong relative to historical estimates (Gurney et al., 2002; Peylin et al., 2013). The results from these models for other time periods (2004–2014, 2001–2004, 1992–1996) and re-evaluation of the TransCom 3 Level 2 and RECCAP results confirm that tropical land carbon fluxes including deforestation have been near neutral for several decades. However, models still have large disagreements on ocean–land partitioning. The fossil fuel (FF) and the atmospheric growth rate terms have been thought to be the best-known terms in the global carbon budget, but we show that they currently limit our ability to assess regional-scale terrestrial fluxes and ocean–land partitioning from the model ensemble

    Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget

    Get PDF
    Based on the 2019 assessment of the Global Carbon Project, the ocean took up on average, 2.5 ± 0.6 PgC yr−1 or 23 ± 5% of the total anthropogenic CO2 emissions over the decade 2009–2018. This sink estimate is based on simulation results from global ocean biogeochemical models (GOBMs) and is compared to data-products based on observations of surface ocean pCO2 (partial pressure of CO2) accounting for the outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing the simulated surface ocean pCO2 to observations. Based on this comparison, the simulations are well-suited for quantifying the global ocean carbon sink on the time-scale of the annual mean and its multi-decadal trend (RMSE <20 ÎŒatm), as well as on the time-scale of multi-year variability (RMSE <10 ÎŒatm), despite the large model-data mismatch on the seasonal time-scale (RMSE of 20–80 ÎŒatm). Biases in GOBMs have a small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to improve the regional budgets and model-data comparison. Accounting for non-mapped areas in the data-products reduces their spread as measured by the standard deviation by a third. There is growing evidence and consistency among methods with regard to the patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On average, the GOBMs reveal less variations in the sink than the data-based products. Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are discrepancies between the resulting sink estimate from GOBMs and data-products. These discrepancies are within the uncertainty of the river flux adjustment, increase over time, and largely stem from the Southern Ocean. Progress in our understanding of the global ocean carbon sink necessitates significant advancement in modeling and observing the Southern Ocean carbon sink including (i) a game-changing increase in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river flux adjustment
    • 

    corecore