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Abstract

This report describes algorithmic details used to estimate the spatio-temporal distribution of CO2 sources/sinks
from atmospheric concentration measurements. The algorithm extents that used in Rödenbeck et al. (2003) in
the following ways:

Higher time resolution. The inversion uses individual mixing ratio measurements (rather than monthly mean
concentrations): Either individual flask pair averages, or hourly values from continuous analyzers. Cor-
respondingly, also the time resolution of fluxes was increased (to daily flux values). In order to combine
weekly and hourly data, a data density weighting is applied.

Generalized process-oriented flux model. All the a-priori information is supplied in the form of a statistical
linear ‘flux model’. Using this formulation, it is more easy to specify a-priori constraints based on direct
process understanding in a flexible and transparent way. At the same time, the prominence of a-priori
constraints can be reduced to a minimum. The ‘flux model’ indirectly determines a-priori correlations
(both spatial and temporal), a spatio/temporal weighting, and an overall scaling.

Iterative solution. Because of the higher time resolution, the number of knowns and unknowns is increased to
a level that the minimization cannot be done via the analytical matrix expressions. Therefore, an iterative
algorithm is used to find the cost function minimum, even though the problem is still linear. As additional
advantage, more flexibility is gained, because atmospheric transport is simulated ‘on-line’ (rather than
being fixed as soon as transport basis functions have been pre-computed), such that choices like data
selection can easily be changed. As disadvantage, each run takes considerable amounts of CPU time.
A-posteriori (co)variances can be calculated for a number of selected scalar quantities.

Besides the general description of the mathematical algorithm, specific implementation details and results for
the case of CO2 are presented.
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iv



MPI-BGC Tech Rep 6: Rödenbeck, 2005

1 Inversion algorithm – Overview

This section shortly reviews the inversion algorithm, and gives an overview about quantities and relations
involved.

1.1 General setting

Time domain: The calculation is interannual, with a time period (from initial time t i to end time te) of several
years (≈ 5 to 20, depending on lengths of used data records). The time step of fluxes is 1 day.

Space domain: Global, spatial resolution of fluxes: ≈ 4◦ latitude ×5◦ longitude (land) or ≈ 8◦ latitude ×10◦

longitude (ocean).

1.2 Input/output quantities and model relations

The primary input is the observed concentrations. The total set of measured values (individual flask pair values
or hourly values, respectively, see Sect. 2.2) is denoted by the vector cobs. The number of values is N .

Modelled concentrations are written as

cmod = Af + cini (1)

with the transport matrix A and the initial concentration1 cini. Fluxes f are written as a function of a vector of
M free dimensionless parameters p in the form of a linear flux model

f = ffix + Fp. (3)

This flux model is nothing else than defining the a-priori probability distribution of the fluxes in a different
than the traditional way: The parameters p are assumed to have a-priori zero mean and unit variance and to be
mutually uncorrelated,2

〈ppri〉 = 0, 〈pprip
T
pri〉 =

1

µ
1 (4)

(where 1 is the identity matrix, and the scaling factor µ should be thought of as 1 in the standard case, see Sect.
1.7 below). Then, the a-priori expectation value of the flux is represented by ffix,

〈fpri〉 = ffix, (5)

and the a-priori covariance matrix of the fluxes follows from F as

Qf ,pri =
1

µ
FFT. (6)

1The initial concentration is assumed fixed and corresponds to a well-mixed atmosphere, i.e., each element of the vector cini is
equal to a value c0. For CO2, the value

c0 = 368.0 ppm + 1.5 ppm/yr · (ti − t2000) (2)

has been chosen, where (ti − t2000) is the time difference (in years, possibly negative) between the start of the inversion period and
the beginning of year 2000. The exact choice of the initial concentration does not matter; a consistent 3D concentration field will be
achieved at the end of the spin-up period (first two years) by adjustment of the fluxes during the first months (compare Sect. 3.3). The
assumption of a well-mixed initial atmosphere is convenient as this state is unchanged by transport and therefore simply leads to a
constant offset c0 to all modelled concentrations at any time and location.

2All stochastic quantities are assumed Gaussian. They are written as a sum of mean and error, e.g.,

f = 〈f〉 + ∆f

Covariance matrices are written as
Qf = 〈∆f∆f

T〉

1
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Thus, the matrix F comprises all the a-priori information about flux uncertainties and correlations. (The a-priori
covariance matrix Qf ,pri is only given for illustration, it does not appear explicitly anywhere in the algorithm.)
The construction of ffix and F is described in Sect. 3.

Combining transport model, Eqn. (1), and flux model, Eqn. (3), gives

cmod = cmod,fix + AFp (7)

where the abbreviation
cmod,fix = Affix + cini (8)

has been introduced. The concentration mismatch between observed and modelled values is defined as

m = cobs − cmod. (9)

1.3 Cost function

According to Eqn. (4), the a-priori (unconditional) probability distribution of the parameters is

Prob(p) ∝ exp
(

−µ

2
pTp

)

. (10)

If the true parameter values were given, the concentration mismatch m would be solely attributed to random
errors in the measured and the modelled concentrations. These errors are assumed to have zero mean (i.e., no
biases), and a given covariance matrix Qm (to be defined in Sect. 2.3). The (conditional) probability distribution
of the mismatch therefore is

Prob(m|p) ∝ exp

(

−1

2
mTQ−1

m m

)

. (11)

According to Bayes’ theorem (Tarantola, 1987), the (conditional) probability distribution of the parameters,
given the concentration mismatch, reads

Prob(p|m) =
Prob(m|p)Prob(p)

Prob(m)
. (12)

The inversion seeks the expectation value 〈ppost〉 of this a-posteriori distribution. As 〈ppost〉 coincides with the
most probable parameter value, it is found by maximizing Prob(p|m) with respect to p, which is equivalent
to minimizing the cost function

J = − ln
(

Prob(p|m)
)

(13)

=
1

2
mTQ−1

m m +
µ

2
pTp + C. (14)

There is one term each for the data and the a-priori constraints. The additive constant C subsumes all parameter-
independent terms, e.g., those arising from Prob(m) and from the normalization of the distribution. The cost
function minimum is calculated from

∂J

∂pT

∣
∣
∣
∣
p=〈ppost〉

= 0. (15)

1.4 Analytic solution

The cost function J to be minimized with respect to p can be written in the form

J(p) =
1

2
pTAp− bTp + C ′ (16)

with the Hessian matrix
A = FTATQ−1

m AF + µ1, (17)

2
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the linear factor (the later ‘right-hand side’)

b = FTATQ−1
m (cobs − cmod,fix), (18)

and the constant

C ′ =
1

2
mT

fixQ
−1
m mfix + C. (19)

From
∂J

∂pT
= Ap− b (20)

and Eqn. (15) then follows
ppost = A−1b. (21)

In the original quantities, the final result reads

fpost = ffix + F(FTATQ−1
m AF + µ1)−1FTATQ−1

m (cobs − cmod,fix) (22)

In most inversion calculations published so far, the transport matrix A has been pre-computed by the transport
model (or its adjoint) and stored, and the matrix inverse has been computed by singular value decomposition
(SVD) of the coordinate-tranformed model matrix

M = Q
−1/2
m AF. (23)

1.5 A-posteriori flux uncertainties

The uncertainties and correlations of the estimated parameter values are contained in the covariance matrix of
the a-posteriori probability distribution Prob(p|m). It can be read off from Eqns. (13) and (16) to be A−1. The
a-posteriori covariance matrix of the flux estimates therefore is

Qf ,post = FA−1FT. (24)

1.6 Integrated and filtered fluxes

The full spatial and temporal resolution contained in the flux vector f (model pixels and daily time steps,
respectively) are not normally the quantities of interest, and, more importantly, not well-constrained by the
data. Rather, fluxes will always be integrated over certain spatial regions, and filtered in time. In this report,
spatial aggregation is always based on the TransCom-3 set of regions shown in Fig. 11. Temporally, fluxes are
either shown ‘as is’ (with seasonality and high-frequency variability), or deseasonalized and low-pass filtered
for interannual variability (IAV). The standard IAV filter used in all time series figures deseasonalizes and has
Gaussian spectral weights (‘Filt0.5gd’ as defined in Appendix A).

Integration/filtering are linear functionals (scalars) of the flux field which can be written as

fz = fTz, (25)

where the vector z can be thought of as a spatio-temporal pattern of weights. The corresponding a-priori and
a-posteriori variances are given by

σ2
fz,pri =

1

µ
zTFFTz, σ2

fz,post = zTFA−1FTz. (26)

The covariances between f1 and f1 corresponding to two different patterns z1 and z2 are

qf1,f2,pri =
1

µ
zT
1 FFTz2, qf1,f2,post = zT

1 FA−1FTz2. (27)

3



MPI-BGC Tech Rep 6: Rödenbeck, 2005

1.7 Scaling of the Bayesian a-priori constraint

In the a-priori probability distribution of the parameters, a factor µ was introduced, but disregarded up to now
(µ = 1). As particularly obvious from Eqn. (14), this factor scales the impact of the a-priori constraints: In
the limit µ → 0, the a-priori term would vanish, in accordance with Qf ,pri from Eqn. (6) going to infinity.
More generally, however, the factor µ determines the ratio between a-priori and data constraints. This is seen
by noting that the cost function J as a whole could be scaled by another arbitrary factor, without changing the
a-posteriori fluxes (only the a-posteriori covariances would change then).

As discussed in more detail in Sect. 3.3.4, the overall magnitudes of both the model-data mismatch un-
certainty Qm and the a-priori flux covariance matrix Qf ,pri (as defined through F) are not well determined in
practice, even if there is some physically-based information on their internal structures. In this sense, µ may
be considered just as a prototype for the many settings that have to be chosen when devising an inversion in
a particular application, in particular as a prototype for settings in F. This parameter µ has been highlighted
here because (i) it is one of the most influential settings, (ii) it is directly linked to certain formal mathematical
criteria of the Bayesian framework, discussed further in Sect. 3.3.4, and (iii) when solving the cost function
minimization iteratively, there is a particularly easy way to vary µ for the purpose of sensitivity testing (Sect.
5.8).

4
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2 Data

2.1 Measurement institutions, sites, and records

Air samples are collected and analyzed by several institutions, which are given in Table 2. Codes, names, and
coordinates of sampling sites are listed in Table 1. A map is given in Fig. 1. In order to denominate data
records in figure legends (and file names), the site codes (capital letters or digits) are extended by 2 prepended
and 1 appended small letters. The first prepended letter denotes the kind of data (time resolution/selection,
Table 3). The second prepended letter can indicate some additional data selection (if any, Table 4). At several
sites, measurements are done by more than one institution. In order to distinguish the respective records, the
appended letter indicates the data source, to the extent necessary for uniqueness (Table 2). The time coverage of
all CO2 concentration records used here is depicted in Fig. 4. This figure also indicates the selection of records
in the different inversion runs presented later in Sect. 4. This record selection is done such that all included
records span the entire target period of the respective run.

2.2 Data selection

Data as provided by the measurement institutions (Table 2) are first selected according to their accompanying
‘hard flags’ (validity flags or special values), if any. In some cases, concurrent records exist that differ in
experimental aspects (e.g., sampling method); there, selection is done according to the recommendations by
the data providers. An overview is given in Table 5. All other data sources not listed in Table 5 provided
preselected data.

For flask sampling sites, the flask pair (or triplet) means are taken as individual data values. If individual
flask values are provided, they are averaged into pair/triplet means if sampled within 1 hour from each other.
For continuous (in-situ) measurement sites, hourly (or half-hourly, respectively, as provided) values are taken
as individual data points.

Further data selection is done with the intention that, while as much valid data as possible should be re-
tained, measurements should be avoided if they are very likely unrepresentative for larger source areas or
particularly badly reproduced in the transport model (these two conditions are very similar, as the coarseness
of the model implies that it cannot be able to capture any small-scale features). For flask sampling, this kind
of selection is usually already done by the sampling institution, by selecting the sampling schedule. For con-
tinuous records from continental sites, mostly day-time values only are used (Table 3), because the transport
model is expected to be particularly wrong during night when a stable boundary layer forms. Options for fur-
ther automatic data selection are listed in Table 4. Normally, records with limited variability (selection ‘v’:
disregard any pair of consecutive values if they represent a change of more than 1 ppm within 1 hr) are chosen
for continuous sites.

In addition to this automatic selection, some manual selection was done (mainly removing ‘spikes’ in the
concentration record; suspected to be due to some local emission or atmospheric transport pathway smaller in
scale than the model resolution). A measurement is potentially disregarded if it considerably deviates from the
mean seasonal cycle of that site. However, if the concentration modelled from the a-priori flux shows a similar
feature in time, the excursion is considered transport-related and retained. As a further guidance, it is checked
whether the considered measurement causes some unusual excursion in the estimated fluxes, and whether soft
flags are set by the data provider. This procedure is clearly not free of arbitrariness, but the number of manually
out-selected values is very small. The described selection is mainly done for flask sites; continuous records
often contain very-high frequency variations of considerable amplitude, but the impact of a single value is low
anyway due to the weighting described later.

At some sites, two or more alternative records exist, measured by different institutions or using differ-
ent experimental techniques. As revealed in a quantitative assessment (Rödenbeck et al., 2005), differences
between many of such records are small: Flux differences in response to systematic experimental errors are
almost negligible compared to many other errors in the inversion. Therefore, it seems justified to merge such
records, offering the advantage that data gaps can mutually be filled. Merging of records has been done here for
a few sites where both flask records and continuous records exist (Fig. 4). Note that the data density weighting

5
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Figure 1: Measurement sites.

Table 1: Sites measuring CO2 concentrations that were used in the inversion (to be continued on next page). The
locations are shown in Fig. 1.

Code Name / Geographic location Latitude Longitude Height Class
(◦) (◦) (m a.s.l.) (Tab. 6)

ALT Alert, Canada 82.45 -62.52 210 S
AMS Amsterdam Island, Indian Ocn. -37.80 77.53 65 R
ASC Ascension Island, Atlantic -7.92 -14.42 54 R
ASK Assekrem, Algeria 23.18 5.42 2728 R
AZR Terceira Island, Azores 38.75 -27.08 30 R
BAL Baltic Sea, Poland 55.50 16.67 7 C
BHD Baring Head, New Zealand -41.42 174.87 85 S
BME St. David’s Head, Bermuda 32.37 -64.65 30 R
BMW Southhampton, Bermuda 32.27 -64.88 30 R
BRW Barrow, Alaska 71.32 -156.60 11 S
BSC Black Sea, Constanta, Romania 44.17 28.68 3 C
CBA Cold Bay, Alaska 55.20 -162.72 25 S
CFA Cape Ferguson, Australia -19.28 147.05 2 S
CGO Cape Grim, Tasmania -40.68 144.68 94 S
CHR Christmas Island, Pacific 1.70 -157.17 3 R
CMO Cape Meares, Oregon, USA 45.48 -123.97 30 S
CPT Cape Point, South Africa -34.35 18.48 230 S

6
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Table 1: (continued) Sites measuring CO2 concentrations.

Code Name / Geographic location Latitude Longitude Height Class
(◦) (◦) (m a.s.l.) (Tab. 6)

CRZ Crozet, S Ocn. -46.45 51.85 120 R
EIC Easter Island, Pacific -29.15 -109.43 50 R
ESP Estevan Point, Canada 49.38 -126.53 39 S
GMI Guam, Mariana Island, Pacific 13.43 144.78 2 R
HBA Halley Bay, Antarctica -75.67 -25.50 10 R
HUN Hegyhatsal, Hungary 46.95 16.65 344 C
ICE Heimaey, Iceland 63.25 -20.15 100 R
ITN Grifton, North Carolina, USA 35.35 -77.38 505 C
IZO Izaña, Tenerife 28.30 -16.48 2360 R
KEY Key Biscayne, Florida 25.67 -80.20 3 S
KUM Cape Kumukahi, Hawaii 19.52 -154.82 3 R
LEF Park Falls, Wisconsin 45.93 -90.27 868 C
MAA Mawson, Antarctica -67.62 62.87 32 R
MBC Mould Bay, Canada 76.25 -119.35 58 S
MHD Mace Head, Ireland 53.33 -9.90 25 S
MID Sand Island, Midway, Pacific 28.22 -177.37 4 R
MLO Mauna Loa, Hawaii 19.53 -155.58 3397 RU
MNM Minamitorishima, Japan 24.30 153.97 8 R
MQA Macquarie Island, S Ocn. -54.48 158.97 12 R
NWR Niwot Ridge, USA 40.05 -105.58 3475 M
PSA Palmer Station, Antarctica -64.92 -64.00 10 R
RPB Ragged Point, Barbados 13.17 -59.43 3 R
RYO Ryori, Japan 39.03 141.83 230 S
SBL Sable Island, Canada 43.93 -60.02 5 R
SEY Mahe Island, Seychelles -4.67 55.17 3 R
SHM Shemya Island, Alaska 52.72 174.10 40 R
SIS Shetland Islands, UK 60.17 -1.17 30 R
SMO Tutuila, American Samoa, Pacific -14.25 -170.57 42 R
SPO South Pole -89.98 -24.80 2810 R
STM Station ‘M’, Atlantic 66.00 2.00 7 S
SYO Syowa, Antarctica -69.00 39.58 11 R
TAP Tae-ahn Peninsula, Korea 36.73 126.13 20 S
TDF Tierra del Fuego, Argentinia -54.87 -68.48 20 S
UTA Wendover, Utah, USA 39.90 -113.72 1320 C
UUM Ulaan Uul, Mongolia 44.45 111.10 914 C
WES Westerland, Germany 54.93 8.32 12 S
WIS Sede Boker, Israel 31.13 34.88 400 C
WLG Mt. Waliguan, China 36.27 100.92 3810 M
YON Yonagunijima, Japan 24.47 123.02 30 R
ZEP Zeppelin, Spitsbergen 78.90 11.88 474 R

7
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Table 2: Measurement institutions and references. The last column gives the appended letter in the record denomination.

CMDL Climate Monitoring & Diagnostics Laboratory, USA c
(Conway et al., 1994)

CSIRO Commonwealth Scientific and Industrial Research Organization, Australia a
(Francey et al., 2003)

JMA Japan Meteorological Agencya j
(Watanabe et al., 2000)

LSCE Laboratoire des Sciences du Climat et de l’Environnement, France l
www.lsce.cnrs-gif.fr

MSC Meteorological Service of Canada m
(Worthy et al., 2003)

NIPR National Institute of Polar Research and Tohoku University, Japan x
(Morimoto et al., 2003)

NIWA National Institute of Water and Atmospheric Research, New Zealand x
ftp.niwa.co.nz/tropac/co2/bhd/

SAWS South African Weather Service x
(Labuschagne et al., 2003)

UBA Umwelt-Bundesamt, Germanya u
(Levin et al., 1995)
www.umweltbundesamt.de/uba-info-daten/daten/mbm/

aData source: World Data Centre for Greenhouse Gases (WDCGG),
gaw.kishou.go.jp/wdcgg.html

described in Sect. 2.3.3 below is essential here to compensate potentially varying temporal data density.

2.3 Data weighting: concentration mismatch uncertainty

According to Eqn. (14), each element of the data mismatch vector m is scaled inversely by a corresponding
uncertainty interval. This acts as a weighting among the data values. Ideally, the uncertainty intervals should
reflect the error statistics of both the measured and modelled concentrations. These are not known well, but
in view on the weighting, at least the relative uncertainties should be reasonable. Therefore, a rather simple
weighting was chosen, guided by assumptions on measurement and model errors, and taking into account a
data density weighting.

2.3.1 Measurement uncertainty

For each individual flask pair mean or hourly mean, an uncertainty interval due to random measurement errors
of

σobs = 0.3 ppm (28)

was assumed. It is based on the maximally allowed flask pair difference of 0.5 ppm (Conway et al., 1994) and
intercomparison differences of 0.2 ppm (Masarie et al., 2001a), and assumed appropriate for all data.

2.3.2 Model uncertainty

Concerning the model uncertainty, it is expected that the ability of the transport model to realistically simulate
the atmospheric concentration field, markedly varies according to the complexity of the local circulation as
well as that of the surface fluxes surrounding the individual sites. In Rödenbeck et al. (2003), therefore, model
uncertainty was related to temporal and spatial gradients at site location, as proxies. Due to some problems with
this approach (it depends on the choice of a-priori fluxes; gradients become higher at finer model resolution

8
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Table 3: Record denomination, first prepended letter: Kind of data.

f Flask data
h Hourly (or half-hourly) values
d as ‘h’, Day-time selected (11:00–17:00 local time)
n as ‘h’, Night-time selected (23:00–05:00 local time)
a Aircraft (3D moving)

Table 4: Record denomination, second prepended letter: Additional data selection.

v limited Variability (<1 ppm/hr)
x no additional selection

although they can then be expected to be more realistic; counter-intuitive ratios between the uncertainties of
certain sites –e.g., relatively high uncertainty for STM– occur), a simpler scheme is chosen here: All sites (Table
1) are classified according to their location with respect to continental vs. oceanic situations, as defined in Table
6. These site classes are then assigned different model uncertainties σmod (without any time dependence) for
the standard inversion set-up. In addition, some sub-classes are defined, to be able to take into account special
model problems at certain sites, if known (such as land/sea breeze systems). Apart from being simple (given
the poor knowledge about the actual model errors), this scheme allows to test the impact of the concentration
weighting in a sensitivity analysis. The standard choices of Table 6 are generally very similar to those set by
the approach used in Rödenbeck et al. (2003).

2.3.3 Data density weighting

For a given site, data and model uncertainties as defined above are combined quadratically into a total mismatch
uncertainty

σtot =
√

σ2
mod + σ2

obs (29)

with respect to the individual data values. However, the inversion algorithm is meant to make use of both
flask and continuous concentration data. This needs some special consideration, to avoid that the much higher
amount of data for continuous measurements would lead to a considerably stronger impact of these sites: Con-
sider a certain site during some time interval, e.g., a particular week. Assume that there are N ∗ measurement
values cobs,i. Then the contribution from these particular values to the cost function is

J∗ =
1

2

N∗

∑

i=1

(cobs,i − cmod,i)
2

σ2
i

(30)

where the sum runs over all individual values in the considered week. If σi = σtot for all these values, this
contribution J∗ would approximately increase in proportion to N ∗ (which is 1 for a typical flask site and up to
7×24 = 168 for an hourly site). Likewise, the contribution

∂J∗

∂pT
= −

N∗

∑

i=1

cobs,i − cmod,i

σ2
i

· ∂cmod,i

∂pT
(31)

to the cost function gradient would be approximately proportional to N ∗ (assuming that the parameter change
∂p changes all cmod,i roughly in the same way, which in turn is the case if the flux model does not contain sub-
weekly frequencies [cmp. Sect. 3] and if the area of influence of the cmod,i [according to atmospheric transport

9



MPI-BGC Tech Rep 6: Rödenbeck, 2005

Table 5: Rules for automatic selection of CO2 data, for cases where flagged raw data are provided by the measure-
ment institution (see Sect. 2.2). For the meanings of the mentioned flags and other codes, refer to the respective file
documentation by the data providers. Data sources not listed here provided preselected data.

Data source Data values considered valid if ...

CMDL (flask) Flag 1 is ‘.’
Filling method is ‘P’, ‘D’, or ‘N’

(at BAL, CHR, and KUM also ‘T’)
CMDL (in-situ) Flag 1 is ‘.’

Flag 2 is not ‘V’,‘U’
CSIRO (flask) Flag 1 is ‘.’

Flag 2 is not ‘O’,‘F’
JMA Flag is 7

Table 6: Site classes with respect to the expected degree of realism of the transport model. The last column gives the
assumed model uncertainties for the standard set-up of the CO2 case.

Class Explanation Model uncertainty σmod

C ‘Continental’ – surface sites on continents; complex circulation and
fluxes, strong vertical transport

3.0 ppm

M ‘Mountain’ – mountain sites (in continents); simpler circulation due to
high elevation

1.5 ppm

R ‘Remote’ – remote (oceanic) sites, such as islands, island mountains,
deserts, Antarctica; relatively simple circulation

1.0 ppm

S ‘Shore’ – at land/sea interface; influenced both by oceanic and conti-
nental tracer sources

1.5 ppm

RU R with diurnal Upslope wind variations 1.0 ppm
SB S with diurnal sea-Breeze system 1.5 ppm

pathways] is within the spatial correlation range). This dependence of J ∗ and ∂J∗/∂pT on N∗ can be removed
if an increased uncertainty of

σi =
√

N∗ · σtot (32)

is used. To implement this in a time-homogeneous way, N ∗
i could, for each value in the concentration time

series, be taken as the number of values within the surrounding weekly interval. In the actual implementation,
the number of values within a 3-week interval around each value, divided by 3, was used.

By this construction of the data density weighting, the implied uncertainty of concentration averages over
weekly (or longer) intervals does not depend on the number of measurements any more, as long as there is at
least one data value per week. Specifically, with the standard choices of the CO2 case, the uncertainty of yearly
averaged concentrations ranges between ≈ 0.15 ppm for a remote site and ≈ 0.45 ppm for a continental site.

The choice of 1 week as reference interval refers to the typical sampling frequency for flask sites. In
addition, this corresponds to the highest frequency in the fluxes that is solved for (compare Sect. 3). There is
yet another aspect: The factor

√
N∗ would also occur in the uncertainty of the average of N ∗ fully correlated

values, relative to that of uncorrelated values. This fits to the expectation that correlation of transport model
errors might be stronger within the time scale of synoptic weather phenomena, which is in the order of a week.

To set the data density weighting further into perspective, consider the hypothetical cost function contribu-
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tion from the average concentration in the considered week:

J∗∗ =
1

2

(c∗obs − c∗mod)2

σ2
tot

, c∗obs =
1

N∗

N∗

∑

i=1

cobs,i, c∗mod =
1

N∗

N∗

∑

i=1

cmod,i. (33)

Note that in this formula, the uncertainty σ2
tot of the individual values has still been used, rather than the correct

one, σ2
tot/N

∗. The gradient of this hypothetical contribution,

∂J∗∗

∂pT
= −

N∗

∑

i=1

cobs,i − cmod,i

N∗ · σ2
tot

· 1

N∗

N∗

∑

j=1

∂cmod,j

∂pT
, (34)

is essentially identical to Eqn. (31) with σi from Eqn. (32), as long as the above assumption holds that
∂cmod,i/∂pT is equal for all data points i in the considered week. Thus, to the extent that fluxes change
only coherently within a week, and that all the cmod,i share a common area of influence, data density weighting
is essentially equivalent to filtering the concentration time series on a weekly time scale, but using time-constant
uncertainties disregarding any data density fluctuations. In contrast to such a data filtering, however, data den-
sity weighting as used here preserves the link between possibly different areas of influence (due to changing
transport paths) and correspondingly different signals among the cmod,i, which may help to better detect spatial
structure in the fluxes3.

The artificial increase of data uncertainties also means that the effective number of data constraints is no
longer the total number N of values, but is reduced to

Neff ≈
N∑

i=1

1

N∗
i

(35)

This expression is based on the assumption that averages over N ∗
i values represent only one degree of freedom.

2.3.4 Covariance matrix

As a final step, the covariance matrix Qm of the concentration mismatch m needs to be constructed. The
squared uncertainty intervals of the individual data values, σ2

i , represent its diagonal elements. Though there
surely is statistical dependence among the errors of different measurements (through common influences of
standard gases, apparatus functioning, etc.), and even more so between different modelled values (through con-
ceptual deficiencies in parameterizations, as well as errors in the driving fields), these covariances are neglected.
Thus, all off-diagonal elements of Qm are set zero.

3On the other hand, filtering of (high-frequency) data on synoptic time scales, similar to Eqn. (33), was found by Law et al. (2003)
to be beneficial in reducing the impact of model errors, when retrieving fluxes from synthetic data (known truth).
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3 Process-oriented flux model

As mentioned in Sect. 1.2, the ‘flux model’

f = ffix + Fp (3’)

introduces all a-priori information into the inversion calculation. Like in Rödenbeck et al. (2003), the
total surface-atmosphere flux f is thought of as the sum of Ncomp different source/sink components,

f =

Ncomp∑

i=1

(

βiffix,i + αiFipi

)

. (36)

For each such component, there is a fixed a-priori term ffix,i, and a deviation term that linearly depends on a
subset pi of the adjustable parameters (vector p) of the inversion. The construction of this flux model can be
easier described by writing the fluxes as continuous (2+1)D fields f(x, y, t) depending on longitude x, latitude
y, and time t (in years, with integer values at Jan 1, 00:00). The flux vector f is just a temporally and spatially
discretely sampled representation of this flux field4. The flux model can then be written as

f(x, y, t) =

Ncomp∑

i=1

(

βiffix,i(x, y, t)

︸ ︷︷ ︸

fixed

+αifsh,i(x, y, t)

Nt,i∑

mt=1

Ns,i∑

ms=1

gtime
mt,i(t)g

space
ms ,i

(x, y)pmt ,ms,i

︸ ︷︷ ︸

= δfi(x,y,t) adjustable

)

(37)

In the adjustable terms, the ‘shape’ fsh,i(x, y, t) represents a weighting in space and time that defines the
‘domain of activity’ of the flux component, while the sets of functions {g time

mt,i (t)} and {gspace
ms ,i

(x, y)} determine
a temporal and spatial decomposition into statistically independent elements. The exact meanings of these
various quantities, and the algorithms performed to assign values to them for the individual components, are
described in Sects. 3.2 and 3.3. Prior to the detailed algorithm, however, Sect. 3.1 gives some general remarks
about the construction of the flux model. An example of specific choices that could be used in a CO2 inversion
is finally described in Sect. 3.4.

3.1 General philosophy

As already mentioned in Sect. 1.2, the flux model determines the a-priori mean 〈fpri〉 and the a-priori covariance
Qf ,pri of the fluxes (Eqns. (5) and (6)). Traditionally, Qf ,pri is specified directly. The definition via a simple
flux model as described here offers the advantage to base these choices on process understanding in a more
direct, flexible, and transparent way.

The individual flux components correspond, on the one hand, to physical processes, such as fossil fuel
burning, carbon exchange of terrestrial vegetation (NEE), or ocean-atmosphere carbon fluxes. However, some
of these processes are further split into their action on different time scales, such as their long-term mean, mean
seasonal cycle, interannual or short-term variability. Each of these contributions is then treated as a separate
component in the flux model. This is convenient as it allows to assign different shapes fsh and different spatial
decompositions gspace to these different time scales.

It needs to be stressed, however, that this ‘flux model’ is not a process model. The ultimate reason to include
a-priori information into the Bayesian inversion at all, is to remedy the fact that the problem is otherwise highly
under-determined. Corresponding to this aim, the flux model is only meant to prescribe certain statistical prop-
erties of the fluxes, to the degree that seems necessary to stabilize the estimation mathematically. As a general
guidance, it is tried to prescribe as little a-priori flux constraints as possible. In particular, the fixed a-priori
flux terms ffix,i(x, y, t) do not have those kinds of variability that are meant to be assessed by the inversion,

4Imagine f(x, y, t) to be given in Tmol/m2/s, and the elements of f to be the integrals of f(x, y, t) over the respective grid cells
and time steps, given in Tmol/cell/day (or Tmol/cell/month, resp.). With this convention, integrals over f(x, y, t) then correspond to
sums over elements of f .
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in order that all the variability found in the result be clearly traceable back to the atmospheric information.
This is a slightly different view than the classical Bayesian interpretation of ffix,i(x, y, t) being an a-priori best-
guess flux estimate and the adjustable term just being its error. Rather, as the ‘best-guess’ deliberately lacks
the variability of interest, the adjustable term (its ‘error’) plays the role of the actual flux component, while
ffix,i(x, y, t) just pre-subtracts some part of it that probably cannot be retrieved by the inversion or that is not
of interest in the particular study.

Therefore, it is the adjustable terms that receive most attention here. Whenever possible, it is tried to use
process understanding in defining them, e.g., by statistical analysis of suitable input data sets as described
below, or by reasoning about spatial and temporal scales of events that may lead to coherent flux anomalies (for
CO2, e.g., drought conditions on land, or upwelling events in the ocean). However, if the available information
is rather ambiguous, the most simple choice (e.g., spatially or temporally unstructured shapes, globally valid
correlation lengths, etc.) are preferred (“Ockham’s razor”).

As a further construction principle, it is tried to also have flux components with implied correlations of
very long spatial or temporal range (long term fluxes, mean seasonal cycles, global fluxes, etc.) besides those
for short-term/small-scale variability, whenever it seems justified from the process perspective. This is be-
cause these large scale components are constrained by a (much) greater amount of data than the small scales;
therefore, it can be expected that splitting them off will tend to stabilize the calculation in a similar way as a
best-guess prior flux would do. Yet, these large-scale estimates will reflect information from the atmospheric
data, not a-priori information. This treatment was inspired by the Geostatistical approach, applied to the CO2

inversion problem by Michalak et al. (2004). In the Geostatistical approach, a long-term value is estimated in
addition to the variability term, effectively changing the correlation structure in such a way that the inversion is
stabilized even without an explicit a-priori term. Extending this idea, the different time scales of one physical
process can be implemented as separate components in the flux model here. This is particularly relevant for the
seasonal cycle: The frequencies νk = 1/yr, 2/yr, 3/yr, . . . are known a-priori to have much higher amplitudes
than all other time scales, immediately justifying their special role. In addition, there are processes for which
distinctly different behaviour (in terms of variability amplitudes or spatial correlations) can be expected at low
(e.g., interannual) or high (e.g., synoptic) frequencies, or in the long-term mean. The time scale separation
allows to exploit this information.

In the following, algorithms for the construction of a flux model are described in a rather general way,
leaving many alternative choices at various occasions. Yet more possibilities arise since different input data sets
may be used. For a particular application, such as the case of CO2 considered here, it is generally not possible
to decide which choices will be ‘best’. In view of “Ockham’s razor” mentioned above, it probably does not
make sense to actually exploit all the available flexibility to create a sophisticated flux model. Rather, the view
is advocated that several different statistical ‘flux models’ (i.e., different values of parameters like correlation
lengths, scaling factors, etc.), based on rational choices, should be tried and compared. The resulting range of
flux estimates is then an indication of the robustness of the result.

3.2 Fixed a-priori term

For some components, there is no parameter-independent term, i.e., the implicit a-priori flux is zero,
βiffix,i(x, y, t) = 0. Otherwise, the flux field ffix,i(x, y, t) is derived from a suitable input data set
finput,j(x, y, t). A scaling factor βi may be needed if this input data are not directly fluxes of the considered
species, but those of another species linked through some conversion factor, or other proxy data. According
to the general construction philosophy outlined above, the chosen input finput,j(x, y, t) is generally filtered, to
use part of the information only. There are the following options, with decreasing degrees of filtering:

• long-term mean fmean
input,j(x, y) [see Eqn. (113)],

• mean seasonal cycle f seas
input,j(x, y, t) [using e.g. a filter such as ‘Filt7.0Ts’, see Appendix A],

• low-pass filtered time series f
(filter)
input,j(x, y, t), or

• time series finput,j(x, y, t) as is.

13



MPI-BGC Tech Rep 6: Rödenbeck, 2005

In addition, many available input data sets are given at monthly time steps. Then, some low-pass filtering is
necessary just to obtain smoothly interpolated flux values at the daily time steps. In these cases, generally
‘Filt7.0T’ (i.e., essentially monthly variations) was chosen.

3.3 Adjustable terms

In the flux model Eqn. (37), the adjustable term

δfi(x, y, t) = αifsh,i(x, y, t)

Nt,i∑

mt=1

Ns,i∑

ms=1

gtime
mt,i(t)g

space
ms ,i

(x, y)pmt ,ms,i (38)

of flux component i is defined by a (scaled) spatio-temporal ‘shape’ function αifsh,i(x, y, t), by a decomposi-
tion into a set of temporal elements {gtime

mt ,i(t)}, and by a decomposition {gspace
ms,i

(x, y)} into spatial elements.
The (relative) strength of all combinations of elements is then determined by the individual adjustable param-
eters pmt,ms,i. A-priori, the parameters (Gaussian stochastic variables) are assumed to be statistically indepen-
dent of each other (and of the parameters of all other components), and to have zero mean and unit variance,

〈pmt,ms,i〉 = 0, 〈p2
mt,ms,i〉 = 1 (39)

(Eqn. (4)). Consequently, the adjustable term has zero mean itself, and the a-priori covariance of the flux
component at location (x, y) at time t with that at location (x′, y′) at time t′ is

〈δfi(x, y, t)δfi(x
′, y′, t′)〉 = α2

i fsh,i(x, y, t)fsh,i(x
′, y′, t′)

×
Nt,i∑

mt=1

gtime
mt,i(t)g

time
mt,i(t

′)

Ns,i∑

ms=1

gspace
ms,i

(x, y)gspace
ms ,i

(x′, y′) (40)

If the normalization condition
Ns,i∑

ms=1

(

gspace
ms,i

(x, y)
)2

= 1 (41)

is fulfilled at every point (x, y), and
Nt,i∑

ms=1

(

gtime
mt,i(t)

)2
= 1 (42)

at any time t, then the a-priori uncertainty of the flux at any point/time is simply given by the shape,
√

〈(δfi(x, y, t))2〉 = αifsh,i(x, y, t). (43)

(As detailed below, it can also be advantageous to replace this pointwise normalization by a normalization with
respect to larger time and/or space scales.) The correlation coefficients between simultaneous fluxes at different
places are determined by the set of spatial elements,

〈δfi(x, y, t)δfi(x
′, y′, t)〉

√

〈(δfi(x, y, t))2〉〈(δfi(x′, y′, t))2〉
=

Ns,i∑

ms=1

gspace
ms,i

(x, y)gspace
ms ,i

(x′, y′), (44)

with an analogous relation for the correlation coefficients between fluxes at different times, but same location:

〈δfi(x, y, t)δfi(x, y, t′)〉
√

〈(δfi(x, y, t))2〉〈(δfi(x, y, t′))2〉
=

Nt,i∑

mt=1

gtime
mt,i(t)g

time
mt,i(t

′). (45)
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3.3.1 Spatial coherency: {gspace
ms ,i

(x, y)}

As seen from Eqn. (44), the spatial decomposition {gspace
ms ,i

(x, y)} determines the spatial coherency of the flux.
If the set of space elements would be a set of non-overlapping regions

gspace
ms ,i,uncorr(x, y) =

{
1 (inside region(ms, i)),
0 (elsewhere),

(46)

then fluxes in different such regions would be a-priori uncorrelated (and fully correlated within each region).
These spatial elements might be larger regions like those of TransCom-3 (Fig. 11) which leads to a traditional
setup. Here, the elements mostly are pixels of a regular grid (e.g., identical to the grid of the transport model
on land, or aggregates of 2 × 2 cells over ocean, see Fig. 6). Spatial correlations between regions arise as soon
as the space elements gspace

ms,i
(x, y) overlap each other. Exponentially decaying overlap of the form

gspace
ms,i

(x, y) = (47)

ams,i

∫∫

exp

(

−%(x, y;x′, y)

r
(x)
i

)

exp

(

−%(x, y;x, y′)

r
(y)
i

)

gspace
ms ,i,uncorr(x

′, y′)dx′dy′

was chosen, leading approximately to exponentially decaying spatial correlations. Here, % gives the distance
between two points at the Earth surface, and r

(x)
i and r

(y)
i determine the length scales of the correlations

in longitudinal and latitudinal direction, respectively. The integration effectively extents over the individual
(small) regions considered independent previously. Note that Eqn. (47) represents a spatial convolution of
the regions (here: pixels). It is therefore nothing else than a spatial smoothing of the previously uncorrelated
a-priori flux field.

In order to fulfill the normalization condition Eq. (41), the individual spatial elements g space
ms ,i

(x, y) are scaled
through ams,i. Since there are more grid cells than spatial elements, the values of the ams,i are overdetermined,
however, such that the normalization can only be satisfied approximately. Therefore, a few iterations are per-
formed in each of which the left hand side of Eq. (41) resulting from the current set of elements is calculated,
and each element gspace

ms,i
(x, y) is divided by the mean left hand side (average weighted by the respective element

itself).

3.3.2 Temporal coherency, time scales: {gtime
ms,i(x, y)}

Analogously to the spatial decomposition, the temporal decomposition corresponds to uncorrelated time inter-
vals if

gtime
mt,i,uncorr(t) =

{
1 (during time interval(mt, i)),
0 (otherwise).

(48)

If the time intervals are the time steps, then the resulting a-priori flux at each location (x, y) is essentially a
‘white noise’ process. Time correlations can be implemented by overlapping elements, such as triangular pulses
of width τi centered around each time step (here: each day). As in the spatial case, this way of introducing
time correlations corresponds to a smoothing of the ‘white noise’ time series, by convolution with a (triangular)
pulse response function.

However, if time scale separation is desired as outlined above, it can be more convenient to define time
correlations via a Fourier expansion, where gtime

mt,i
(t) are Fourier components (sine and cosine waves, plus a

constant). Both the temporal coherence and the selection of time scales is then defined by choosing appropri-
ate weights wi(νk) for the amplitudes of these Fourier components. To make this quantitative, note that the
uncorrelated (‘white noise’) time series corresponding to Eqn. (48) can be written as the Fourier series

δfi(t) = αifsh,i(t)

[√

1

N
pave

i +

∞∑

k=1

√

2

N

(

cos(2πνkt)p
cos
k,i + sin(2πνkt)p

sin
k,i

)
]

(49)

where N is the number of time intervals, and all the parameters pave
i , pcos

k,i , and psin
k,i are independent and have

zero mean and unit variance. This follows from Eqns. (113), (108), and (109) applied to white noise (where
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the flux from each interval has been approximated by an independent Dirac δ pulse, and the shape fsh,i(t) is
assumed constant). To construct a time-varying component, the adjustable term is written as a filtered Fourier
series,

δfi(x, y, t) = αiφi(x, y)

∞∑

k=1

aiwi(νk)ui(νk)
(

cos(2πνkt)p
cos
k,i (x, y) + sin(2πνkt)psin

k,i(x, y)
)

. (50)

This has the general structure (38) of the adjustable terms, by the identifications fsh,i(x, y, t) = φi(x, y), and
gtime
mt,i

(t) = aiwi(νk)ui(νk) cos(2πνkt) or aiwi(νk)ui(νk) sin(2πνkt) with a suitable correspondence between
mt and k. The parameter terms

p
cos | sin
k,i (x, y) =

Ns,i∑

ms=1

gspace
ms,i

(x, y)pmt,ms,i (51)

have zero mean and unit variance at each spatial point, due to the spatial normalization (41).
Considering an individual point (x, y), the a-priori frequency spectrum of the component is determined by

the factors aiwi(νk)ui(νk). In this expression, wi(νk) denotes the filter to be applied in order to select certain
time scales and to impose temporal correlations: Depending on which set of weights [such as Eqns. (118)
or (119)] is chosen, the component will be sensitive to the low-frequency non-seasonal variability or to the
mean seasonal cycle, where the parameter ν low determines the temporal correlation length. Remember that the
chosen low-pass filter has the same effect as convolution of the time series with a (triangular) impulse-response
function.

In addition to the filter, one might also want to provide a-priori information about the general form of the
spectrum, which can be done by the factor ui(νk). Depending on the physical process, spectra like

ui(ν) =

{
νεi (ν ≥ 1)

1 (else)
(52)

could be prescribed, with typical exponents ε = −1/2 or ε = −1. However, if the sampling frequency of the
data is high enough compared with the frequencies of interest, an a-priori white spectrum, ui(νk) = 1, may be
most appropriate. If the resulting (unnormalized) weight wi(νk)ui(νk) is less than 0.02 (i.e., if the frequency
νk is damped to less than 2% of the maximum), then it is omitted completely, in order to avoid almost ‘dead’
parameters.

Finally, the constant ai is set to
1

a2
i

=

∞∑

k=1

(

wi(νk)ui(νk)
)2

(53)

in order to fulfill the normalization (42) (due to the statistical independence of the parameters attached to the
individual Fourier components)5 . It can, however, also be convenient to modify the normalization as

1

a2
i

=
∞∑

k=1

(

w
(norm)
i (νk)wi(νk)ui(νk)

)2
(54)

with some additional low-pass filter w
(norm)
i (ν). Of course, the normalization (42) is no longer fulfilled then.

The effect is that the shape no longer determines the standard deviation of the instantaneous flux as in Eqn.
(43), but that of the flux filtered according to w

(norm)
i (ν), while the the instantaneous flux has a higher standard

deviation. For example, this can be used during sensitivity testing to ensure identical standard deviations for
interannual variations when comparing different flux models with different spectra for the high frequencies.
Another application is discussed in Sect. 3.3.3.

5For a ‘white noise’ component (wiui = 1), Eqn. (53) gives 1/a2
i = N/2, because there are N/2 Fourier components in a time

series of N steps. This confirms consistency between Eqns. (49) and (50).
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In the flux component according to Eqn. (50) described so far, any constant term is missing. This is because
long-term fluxes will be treated as separate flux components. Obviously, such a long-term component has
only one time element (Nt,i = 1) which is simply constant, gtime

1,i (t) = ai. However, the value of ai needs
some attention. If this long-term component i is meant to be the missing constant term of some variability
component i′ of the form Eqn. (50), then ai = ai′/

√
2, where ai′ is the normalization constant from Eqn. (53)

of that other component, and the factor 1/
√

2 follows from Eqn. (49). In practice, the other component i′ does
not necessarily need to exist, but it is important to note that ai constructed in this way depends on the length
T = te − ti of the time series in the same way as the implied standard deviation of the long-term flux when
using a conventional specification of time variability as a sequence of emission pulses: namely, proportionally
to 1/

√
T . Such a dependence on T is essential to ensure that the behaviour of the inversion is independent

on the length (remember that the number of data constraints also increases with T ). It is further important to
note that both ai and the implied long-term standard deviation of a conventional term depend on the temporal
correlations (if the instantaneous standard deviation is kept constant). This might be desired, but if not, then
ai can just be chosen to correspond to some imaginary variability component i ′ the power spectrum of which
is chosen independently from any existing variability components, e.g., using w

(norm)
i (ν) from Eqn. (54). This

freedom is one of the advantages of time scale separation over the conventional way imposing fixed relations
between long-term behaviour and anomalies.

An intuitive objection against Fourier modes might be that they are non-local in nature. However, as
shown, a (filtered) Fourier series has the same statistical properties as a conventional (time-correlated) a-priori
term defined in the time domain. The only exception is that the Fourier decomposition imposes periodicity
(i.e., start and end values are equal), which can be avoided in the time domain by special treatment of the
borders. To decouple start and end values in the Fourier case, and to avoid undue influence of the spin-up
period onto the long-term mean or mean seasonal cycle, special precaution is taken by adding an initialization
flux component described in Sect. 3.3.6. On the other hand, Fourier modes have the advantage that the number
of adjustable parameters only depends on the highest included frequency, which can be considerably fewer than
in the time domain where each time step requires its own parameters. Despite this lower number of parameters,
the resulting time series will be smooth.

3.3.3 Spatial/temporal weighting: fsh,i(x, y, t)

According to Eqn. (43), the shape αifsh,i(x, y, t) determines the local/instantaneous a-priori standard devia-
tion of the adjustable term, implying a weighting: Signals in the data will preferably be projected into loca-
tions/times with large a-priori standard deviation. Therefore, the shape is chosen to reflect the spatio-temporal
distribution of the action of the process thought to underly the flux component. Depending on the intention,
this can be done in different ways, e.g., by statistical analysis of a suitable –possibly filtered– input data set, or
from proxy information.

If the interest focuses on the time variations of fluxes at the individual locations (or within certain areas),
the appropriate shape is constant in time, αifsh,i(x, y, t) = αiφi(x, y), where the spatial pattern αiφi(x, y)
gives the amplitude (time-wise standard deviation with respect to the autocorrelation implied by the chosen
{gtime

mt,i(t)}) at each location. A natural way to assign such a spatial pattern, then, is to use the time-wise
standard deviation of a suitable input data set finput(x, y, t), the statistical properties of which are assumed to
represent the statistical properties of the considered flux process. The amplitude is conveniently calculated as
the square root of its total spectral power,

φ
(filter)
input (x, y) =

√
√
√
√

∞∑

k=1

(

w(filter)(νk)f
cos,k
input(x, y)

)2
+

∞∑

k=1

(

w(filter)(νk)f
sin,k
input(x, y)

)2
, (55)

where f cos,k
input(x, y) and f sin,k

input(x, y) are the Fourier coefficients of finput(x, y, t) from Eqns. (108) and (109). To
set this amplitude into perspective: For a purely sinusoidal input (and no filter damping, w = 1), it would be
related to the peak-to-peak amplitude by

φinput(x, y) =
1

2

(

max
t

{finput(x, y, t)} − min
t
{finput(x, y, t)}

)

. (56)
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The filter weights w(filter)(ν) included here can serve one of two purposes:

• If time scales were separated (i.e., if the considered adjustable term is meant to represent only a certain
part of the temporal variability of the underlying process), then the input data set f input(x, y, t) needs
to be filtered with the same weights as used in the adjustable term, in order to calculate the time-wise
standard deviations only from these very frequencies.

• If the input data set finput(x, y, t) does only provide lower frequencies (e.g., when only monthly values
are available), then it needs to be filtered as explained in Sect. 3.2. In that case, the normalization of the
adjustable term has to be done using Eqn. (54), with w

(norm)
i (ν) = w(filter)(ν).

The amplitudes could further be scaled by the scalar αi, if there is extra information indicating that the input
data set has too little or too large variability (or for sensitivity testing). Otherwise, αi = 1 is appropriate.

It should be noted that this treatment sets the local amplitude (time-wise standard deviation) to that found
in the input data set. However, this does not automatically ensure the same correspondence between amplitudes
at larger spatial scales (e.g., for fluxes averaged over larger areas, or for the global flux). This is only the case to
the extent that the spatial correlation structure chosen for the flux component via {g space

ms ,i
(x, y)} is representative

for the spatial correlation structure of the input data set finput(x, y, t) (the underlying process, respectively).
Theoretically, the spatial correlation structure of finput(x, y, t) could be determined numerically, but this would
be quite expensive, and it is questionable how well it would represent the true correlation structure of the
process. As an easier fix, the scaling αi can be adjusted, as discussed in Sect. 3.3.4.

Though the described approach seems attractive, suitable input data sets are often not available. Another
possibility to define the shape αifsh,i(x, y, t) is to employ proxy information. For example, for a CO2 com-
ponent related to terrestrial vegetation, an appropriate shape will be zero over deserts and oceans, but high in
rain-forests – as the long-term mean of NPP has this property, it could serve as a (crude) proxy (Rödenbeck
et al., 2003). If no solid information is available, a flat shape (constant in space) may be most appropriate. In
both cases, the scaling factor αi is still free, and needs to be defined by the methods of Sect. 3.3.4.

3.3.4 Scaling: αi

The final element to be defined is the overall scaling factor αi for the flux component. On the one hand,
this scaling has the largest impact on the results, as will be shown in Sect. 4.2 below. On the other hand,
unfortunately, it is the least known of all flux model elements, for a number of reasons:

• In some cases (shape obtained from input standard deviations, Sects. 3.3.3 above, or as a relative error,
Sects. 3.3.5 below), αi has a conceptual meaning which defines its value, but in many other cases (e.g.,
shape proportional to some proxy), additional information is required.

• The flux estimates do not actually depend on the a-priori standard deviations themselves, but on the ratios
between the standard deviations of different flux components (land vs. ocean, Tropics vs. high latitudes,
etc.), as well as between a-priori fluxes and data (covariance matrix Qm). Thus, unrealistic scaling in
only one flux component, or in the model-data mismatch uncertainty, spoil the set-up as a whole.

• As mentioned before, due to the normalizations (41) and (42) the shape determines the a-priori standard
deviations specifically at the local/instantaneous scales, while the a-priori standard deviations on all other
scales then follow according to the chosen correlation structure. However, correlation structure itself is
not too well-known in most practical cases. Normalization could also be made referring to other scales
(as done, e.g., when using Eqn. (54)), but then the local/instantaneous normalization is lost instead. It
is not always obvious which scale should be chosen. However, picking the spatial/temporal scale of
normalization is essentially equivalent to changing the scaling factor αi.

• The pure existence of a Bayesian a-priori term in the cost function is damping all variability. This is
because, by construction of the Bayesian formalism, a zero adjustable term is declared as most likely
a-priori, while here the adjustable term carries the actual variability of interest. Suppose that the flux
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model F would contain enough degrees of freedom to model the true flux ftrue, that the true parameters
ptrue to obtain this true flux would be known, that the transport model A would be perfect, and that there
is no measurement error, such that cobs = ctrue = AFptrue. Then the retrieved parameters would be
(cmp. Sect. 1.4)

ppost =
(
FTATQ−1

m AF + µ1
)−1

FTATQ−1
m AFptrue (57)

(where ffix = 0 has been assumed for simplicity). This would only coincide with the true parameters in
the limit µ → 0, which however cannot be taken as the inverse

(
FTATQ−1

m AF
)−1 does not exist (after

all, this is the very reason to consider using a-priori constraints).6 However, one may try to reduce this
damping by choosing µ smaller than unity, or, equivalently, increase (some of) the αi (such an artificial
increase of a-priori uncertainties over what seems to result from physical arguments has been termed
‘reluctant Bayesian’).

In order to solve these problems, there are two groups of remedies, one of them based on additional external
information, the other on internal consistency arguments:

Scaling according to given scalars. If a-priori information about some (generally larger-scale) feature of the
flux is available, such as the scalars mentioned in Sect. 1.6, αi can be used to set the corresponding
a-priori standard deviation. Examples are:

• Standard deviation of the long-term global flux,

σlt,glob
i =

√
√
√
√ T

Tσ

〈(
1

T

∫ te

ti

∫∫

Globe
δfi(x, y, t) dxdydt

)2
〉

(58)

(Tσ is the time interval the standard deviation refers to). Scaling with respect to σ lt,glob
i makes sense

for long-term flux components.

• Standard deviation of the filtered global flux at a reference time tr,

σ
(filter),glob
i =

√
√
√
√

〈(∫ te

ti

z(filter)(t|tr)
∫∫

Globe
δfi(x, y, t) dxdydt

)2
〉

, (59)

where z(filter)(t|tr) is the pulse response function (with respect to time tr) of the chosen filter,
assumed to be normalized as

∫
z(t|tr)dt = 1. Scaling with respect to σ

(filter),glob
i may be appropriate

for flux components representing variability.
For interannual variability, an appropriate filter is the IAV filter of Eqn. (115) with ν sigma = 0.5/yr
(‘Filt0.5gd’), which is also used then to smooth the time series plots. The choice of the reference
time tr is generally arbitrary, as long as the shape fsh,i(x, y, t) is time-constant and tr is sufficiently
far from ti and te to avoid edge effects. Here, tr = te−1.5 yr (i.e., in the middle of the one-but-last
year) was taken. The standard deviation of the so-filtered flux at tr will be denoted by σIAV

i .
In the numerical implementation, the pulse response z IAV(t|tr) is calculated by Fourier transforma-
tion of the Dirac δ(t|tr), weighting by wgd(ν; νsigma) from Eqn. (115), and back-transformation.

• Most generally, the standard deviation of any linear functional of the flux,

σ
(z)
i =

√
√
√
√

〈(∫ te

ti

∫∫

Globe
z(x, y, t) δfi(x, y, t) dxdydt

)2
〉

, (60)

e.g., filtered flux from a certain region.
6In a simple conceptual example one could sample a sine wave of a given amplitude at N time instants and retrieve the amplitude

with a Bayesian zero prior. The estimated amplitude will always be smaller than the true one, unless in the limit of infinite a-priori
amplitude. The underestimation becomes less with increasing N .
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Again, if αi is chosen such that a certain one of these standard deviations has a given value, then the
a-priori standard deviations of the local/instantaneous flux depend on the chosen spatial and temporal
correlation structure (i.e., decompositions {gtime

mt,i
(t)} and {gspace

ms ,i
(x, y)}). This has to be kept in mind

when varying correlation lengths during sensitivity testing: A-priori standard deviations will be constant
only with respect to the particular space and time scales determined by the above choice of scalar, but
will vary on any larger or smaller scales (cmp. discussion after Eqn. (54)).

Mathematical criteria. On a more formal level, there are theoretical criteria whether the assumed uncertainty
structure and the data information are compatible. Such criteria can, in turn, also be used to choose
parameters in the flux model. The following possibilities have been suggested in the CO2 inversion
literature:

• The doubled cost function 2J at the minimum should be statistically χ2-distributed with N de-
grees of freedom (Tarantola, 1987). If the actually obtained value is unlikely with respect to this
distribution, the assumed uncertainties of model-data mismatch and/or of a-priori fluxes may be in-
adequate. Then, all scaling factors αi simultaneously (or, equivalently, the overall scaling µ) could
be adjusted to enforce 2Jpost/N ≈ 1 (Press et al., 1992; Rayner et al., 1999).

• Krakauer et al. (2004) suggested Generalized Cross-Validation (e.g., Hansen, 1998) to determine
individual scaling factors αi (or other ‘flux model’ parameters).

• Michalak et al. (2005) proposed a Maximum Likelihood approach to determine a-priori variances
(equivalent to scaling factors αi in the ‘flux model’). [In a previous study (Michalak et al., 2004),
the application of methods from Geostatistics has been proposed to also estimate parameters like
correlation lengths etc.]

3.3.5 Special flux components

For some flux components, the adjustable term may play the role of a relative error to the fixed term. Then
fsh,i(x, y, t) = ffix,i(x, y, t), and αi is given by the relative error. In the simplest case, only one global and
constant scaling parameter is estimated (Nt,i = 1, Ns,i = 1, gtime

1,i (t) = 1, gspace
1,i (x, y) = 1). If the relative

error is assumed to vary with space and/or time, then again the decompositions of Sects. 3.3.1 and/or 3.3.2
apply. A potential example is fossil fuel CO2 emissions.

3.3.6 The initialization flux component

The first few months of the target period are special because the fluxes estimated there also serve to obtain the
‘right’ implicit 3D initial concentration field in the model atmosphere (remember that the initial concentration
is just set uniformly to some crude value given by Eqn. (2)). Therefore, a special flux component i0 was added,
that only acts during the first half a year, with Nt,i0 = 6 independent emission pulses each of which is linearly
declining during the first 1, 2, . . . , or 6 months after initial time ti:

gtime
mt,i0(t) =

{
1 − (t − ti)/(mt/12)yr (t < ti + (mt/12)yr)

0 (else).
(61)

Spatially, the flux component is divided into emissions from a regular grid of ≈ 8◦ latitude ×10◦ longitude
pixels (as the ocean grid Fig. 6, but global coverage), spatially correlated at short scale (0.05 Earth radii). The
shape has no structure, fsh,i0(x, y, t) = const, and the scaling αi0 is determined by setting an uncertainty
σlt,glob

i0
for the total emissions from this component and using Eqn. (58).

3.4 A flux model for CO2

3.4.1 Standard case

The statistical ‘flux model’ described here is similar to the inversion set-up of Rödenbeck et al. (2003). It mainly
differs in that less a-priori information has been used, by separating land and ocean fluxes into 3 components
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each (representing long-term, mean seasonal, and interannual variations), while avoiding the fixed terms except
for a time-mean pattern.

The following list gives the specific choices for the individual components in a standard set-up. At a number
of places, details had to be specified in an ad hoc fashion for lack of solid a-priori information. Many of these
choices, indicated by (F), will be varied in the sensitivity cases introduced below.

NEE (long-term):

• The fixed term ffix,nee,lt(x, y, t) equals the 1980–1992 mean NEE flux from the CCMLP-LPJ bio-
sphere model (Sitch et al., 2000; McGuire et al., 2001). Despite the general intention to avoid fixed
terms, a time-mean pattern is taken here because of the limited trust in the inversion’s ability to get
long-term fluxes right (F).

• The adjustable term has a spatial weighting (shape fsh,nee,lt(x, y, t), see Fig. 5) proportional to the
mean NPP of CCMLP-LPJ. This NPP weighting is taken as a crude proxy for vegetation activity.

• According to the discussion in Sect. 3.3.2 above, the single (constant) temporal element g time
1,nee,lt is

chosen to refer to a Fourier series, which is here assumed to contain all frequencies slowlier than
1/yr (unweighted). Since the Fourier spectrum actually used in the interannual NEE term contains
much more frequencies (see below), this choice leads to enhanced uncertainties for the long-term
flux (due to the normalization of total spectral power).

• Spatial correlations arise from exponentially decaying elements gspace
ms,nee,lt(x, y) with e-folding

length of 0.075 Earth radii (480 km) in both latitude and longitude directions (Fig. 7) (F). There
are spatial elements for each land pixel of the transport model (≈ 4◦ latitude ×5◦ longitude, Fig. 6).

• Scaling αnee,lt = 1.2 (F) as in the interannual NEE component (see below).

NEE (seasonal): Although temporal variability is already covered by the ‘interannual’ component below, the
‘seasonal’ component provides additional freedom for the large-scale mean seasonal cycle (F). One ra-
tionale is that geographic areas of large/small seasonality need not at all coincide with areas of large/small
interannual variability (i.e., the power spectrum –with respect to the ratio of seasonal and nonseasonal
frequencies– is space dependent, which cannot be accommodated within one flux component of the form
(38)). Further, as seasonality is assumed to be coherent over larger spatial ranges (especially on land
along latitude circles), spatial correlations can be chosen longer than those for IAV. Thus, this component
may improve constraints in regions far from atmospheric measurements.

• This component has no fixed term, ffix,nee,seas(x, y, t) = 0, because a fixed NEE term already exists
in the non-seasonal component.

• The shape fsh,nee,seas(x, y, t) of the adjustable term is constant in time, its spatial structure (Fig. 5)
equals the amplitude of the mean seasonal cycle of NEE in the CCMLP-LPJ simulations, low-pass
filtered with ν low = 6/yr, Eqn. (55).

• The time correlation of the adjustable term are defined in terms of its Fourier spectrum (containing
seasonal frequencies only), weighted by a low-pass filter with ν low = 6/yr (Fig. 9). Addition-
ally, high frequencies are dampened proportional to ν−1, which roughly corresponds to the power
spectrum of NEE in CCMLP-LPJ. The normalization of total spectral power involves an additional
low-pass filter with ν low = 6/yr, which enhances uncertainties for the seasonal component.

• The spatial coherence is similar to that of the long-term (and interannual) NEE components, except
that correlation lengths in longitude direction are 3 times as long.

• No additional scaling, αnee,seas = 1.

NEE (interannual): Despite the name ‘interannual’, this is the component to accommodate the temporal vari-
ability.

• Again, no fixed term.
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• The shape fsh,nee,iav(x, y, t) is NPP weighted, as in the long-term NEE component.
• The time correlation corresponds to the Fourier spectrum of a low-pass filter with ν low = 12/yr

(i.e., it contains frequencies up to half-monthly) (F). As the main rationale, this choice does not
contain any frequencies higher than the weekly or two-weekly sampling density of most flask sites.
It represents a compromise between the need to avoid aliasing of the sampling schedule into the
higher frequencies, and the desire to minimize aggregation errors from not having enough degrees
of freedom on short time scales. Apart from the low-pass filter, the spectrum is ‘white’, i.e., no
a-priori damping is prescribed. Moreover, it also contains the seasonal frequencies (again), in order
to have a full spectrum even where the seasonal component is very small (e.g, in rain forests) and
at the shorter spatial correlation.

• Spatial coherence like long-term NEE.
• The scaling is αnee,iav = 1.2 (F). It is chosen rather ad-hoc, leading to a standard deviation of IAV

filtered global flux of ≈3.6 PgC/yr.

Ocean exchange (long-term):

• The fixed term ffix,oc,lt(x, y, t) (F) is constant in time, with large-scale values from the ocean
inversion by Gloor et al. (2003). Small-scale spatial patterns are proportional to the ∆pCO2 based
flux estimates by Takahashi et al. (2002).

• In the adjustable term, the shape fsh,oc,lt(x, y, t) is chosen constant and flat (Fig. 5), scaled to
0.3 µmol/m2/s (F).

• Normalization of the temporal element as in the long-term NEE component (see above).
• The spatial correlations are defined analogously to NEE, though with an e-folding length of 0.1

Earth radii (630 km) (F). The longer correlation range allows a twice as coarse grid (aggregated to
≈ 8◦ latitude ×10◦ longitude, Fig. 6), in order to reduce the number of adjustable parameters.

Ocean exchange (seasonal): An extra seasonal component has been specified also for the ocean exchange
(F), although benefits are less clear because ocean seasonality is much less pronounced and much less
coherent spatially, than on land.

• There is no fixed term, ffix,oc,seas(x, y, t) = 0.
• The shape fsh,oc,seas(x, y, t) equals the seasonal cycle amplitude of the ∆pCO2 based ocean flux

by Takahashi et al. (2002) [data version including the correction for 10 m winds].
• Time structure identical to that of seasonal NEE.
• Spatial structure identical to that of long-term ocean exchange, but twice as long correlations in

longitude.

Ocean exchange (interannual):

• Again, no fixed term, ffix,oc,iav(x, y, t) = 0.
• The shape fsh,nee,iav(x, y, t) is identical to that of the long-term ocean component.
• Time correlation as interannual NEE component (for the same rationale, which is not process-

related).
• The spatial coherence like long-term ocean component.

Fossil fuel emissions: Fossil fuel emissions are generally considered much better known than the NEE or
Ocean components. Moreover, they have a very peaked spatial structure that surely cannot be resolved
by the atmospheric data. Therefore, emissions estimates are taken from fuel use statistics.

• Pre-subtracted fossil fuel emissions ffix,ff(x, y, t): Yearly totals and geographical distribution
according to global statistics from the EDGAR data base (Olivier et al., 2001). After year
2001, extrapolation of the 2001 pattern using a global factor of ≈ 1.4%/yr (linear increase of
0.1035PgC/yr).
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• No adjustable term.

Initialization component: As described in Sect. 3.3.6, with σ lt,glob
i0

= 4PgC/yr (with respect to a time scale
of Tσ = 1yr).

3.4.2 Sensitivity tests

Individual choices of the set-up were changed to test their impact:

‘all2’: All a-priori standard deviations multiplied by 2 (µ = 0.25).

‘all0.5’: All a-priori standard deviations divided by 2 (µ = 4).

‘ld2’: A-priori standard deviations of land flux components multiplied by 2.

‘ld0.5’: A-priori standard deviations of land flux components divided by 2.

‘oc2’: A-priori standard deviations of ocean flux components multiplied by 2.

‘oc0.5’: A-priori standard deviations of ocean flux components divided by 2.

‘long’: Spatial correlation lengths of all components longer (Fig. 10):

• 4 times in longitude for long-term and interannual

• 2 times in latitude for long-term and interannual

• 3 times for seasonal NEE

• 2 times for seasonal Ocean exchange

(amplitude normalized to ensure σIAV
i [Sect. 3.3.4] identical to standard, by µ = 5).

‘slow’: Stronger damping of high frequencies (Fig. 9): ν low = 6/yr in both interannual components (normal-
ized to ensure σIAV

i identical to standard, by µ = 2).

‘fast’: Allow more high frequencies (Fig. 9): ν low = 26/yr in both interannual components (normalized to
ensure σIAV

i identical to standard, by µ = 0.46).

‘noFix’: No fixed terms (except fossil fuel).

‘noSeas’: No additional seasonal components.
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4 Results: CO2 flux estimates

4.1 Standard results

The algorithm described here is illustrated by the resulting surface-atmosphere CO2 flux estimates. Fig. 12
shows the interannual variations of regionally integrated fluxes (deseasonalized and filtered as described in
Sect. 4.4). The full temporal variability is seen from Fig. 13. All these runs use the standard data treatment
of Sect. 2, as well as the standard flux model of Sect. 3.4.1. They differ in their sets of observation sites (see
Fig. 4). For the larger sets, differences on the displayed spatial resolution into 22 continental-scale regions
are relatively small, suggesting that there is already some beneficial redundancy, and the possibility that more
spatial detail could be resolved.

4.2 Uncertainty

There is two kinds of measures for the uncertainty in the flux estimates, both shown in Fig. 14 (IAV) and Fig.
15 (full variability):

A-posteriori standard deviations. The width of the gray shading around the standard case gives the standard
deviation of the interannual flux anomaly (i.e., of the variability flux components only) at reference time
tr (the standard deviation is time dependent in principle, but variations are small). This standard deviation
reflects the propagation of model-data mismatch errors and a-priori flux errors onto the result, according
to their respective assumed magnitudes, and given the transport and flux models. As these magnitudes are
rather arbitrary (cmp. in particular Sect. 3.3.4), the a-posteriori standard deviations only have a meaning
relative to the corresponding a-priori standard deviations (given in Fig. 14 as error bar around the black
line). The larger the reduction in standard deviation from a-priori to a-posteriori, the better constrained
by data the region is.

Sensitivity testing. The ensemble of thin lines illustrates the spread in fluxes when ‘flux model’ settings are
varied according to the list in Sect. 3.4.2. This ensemble has been devised by changing individual el-
ements (scaling of flux components, correlation lengths, etc.) in both possible directions around the
standard case. Settings that, according to other criteria, seem less trustworthy than the standard, have
been marked by broken lines. All solid-line cases seem as reasonable as the standard case. Selected
examples with rather large deviations from the standard have been highlighted by color.

4.3 A-posteriori correlations

In contrast to the a-posteriori standard deviations, a-posteriori correlation coefficients between scalars (e.g.
regional integrals) of the flux field (Fig. 16) have a direct interpretation. The most favorite situation are small
correlation coefficients, indicating that the pair of scalars is constrained independently from one another by the
data. A negative value means anti-correlation: For example, the sum of two anti-correlated regions is, in terms
of relative uncertainty, better constrained than the regions individually. A positive value indicates that both
regions depend on the same signals in the data, and that information distinguishing them is potentially missing.

As a new piece of information with respect to Rödenbeck et al. (2003), Fig. 16 gives separate sets of
correlation coefficients for interannual anomalies (upper-left block) and long-term fluxes (lower-right block)
among the TransCom-3 regions, as well as the correlation coefficients between anomaly and long-term mean
(identical lower-left or upper-right blocks). These latter are seen to be small, suggesting that temporal and
long-term (spatial) signals are largely decoupled. Thus, chances are that the larger errors in the long-term
values do not spoil the temporal variability estimated. The split between anomaly and average has become
possible through the time scale separation in the flux model, such that correlations between the individual flux
components could easily be calculated.
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4.4 Remark: Time series filter

Apart from the actual sensitivity of the results to error sources and choices made, the figures also depend on the
degree of smoothing and filtering. For time series, Fig. 17 compares three different choices:

• The widely used Box-car smoother (running yearly sums) has the advantage of an intuitive interpretation
as an annual total, and of its built-in deseasonalizing effect. However, it fails to remove much of the high-
frequency variability not actually desired in IAV plots. Even more importantly, due to its bad spectral
properties (involving negative weights for many Fourier components, including all between the first and
second seasonal harmonic), it flips the phase of some anomalies, such as those in 1997 and 1998 in
Europe.

• The Triangular filter ‘Filt1.0T’ (spectral weights wTd(ν|ν low) from Eqn. (118) with ν low = 1/yr, cor-
responding in the time domain to an approximately triangular pulse response function with HWHH of
1 yr) also deseasonalizes by itself, while having only non-negative weights in frequency space. High-
frequency variability is efficiently dampened. However, it also considerably dampens interesting IAV
frequencies, even in the frequency range below 0.5/yr.

• The standard filter ‘Filt0.5gd’ used in all time series figures has Gaussian spectral weights, Eqn. (115),
with νsigma = 0.5/yr. It does not damp as heavily as the triangular filter. On IAV time scales, it is seen
to behave quite similar to the intuitive box-bar filter, while avoiding its disadvantages. As a drawback,
seasonal frequencies have to be removed explicitly, though all but the main seasonal harmonic (ν = 1/yr)
are essentially damped away already (Fig. 18). A further disadvantage is that the pulse response function
extends over the full time domain, which increases computation demands on convolution.
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5 Iterative solution

This is a technical section on the numerical minimization of

J(p) =
1

2
pTAp− bTp + C ′ (16’)

with respect to p, which is equivalent to finding the solution of

p = A−1b. (21’)

Due to the high temporal resolution, the number of data values and parameters is very large, such that
the involved matrices cannot be handled any more by present-day computers. An iterative solution of the
cost function minimization remedies this situation because it only involves vectors (and products of matrices
and vectors), but no explicit storage of the matrix A itself in memory. As the gradient of the cost function
is available via the adjoint of the transport model, the conjugate gradient algorithm was chosen (Press et al.,
1992). Standard implementations of this algorithm are generally meant to minimize non-linear functions
J(p); in every iteration, they require several function calls to minimize the non-linear function along the
current search direction. As, in the present case, each function call involves a rather expensive transport model
run, the actual linearity of the function was exploited to perform only a single function call per iteration, as
described in the following. However, the large number of parameters leads to round-off problems. These
had to be counteracted by additional correction steps. Further, this section describes diagnostical quantities
used to measure progress and consistency of the iteration, ways to calculate a-posteriori covariance matrices
(approximation of A−1), and to vary the parameter µ in A for sensitivity testing.

5.1 Basic conjugate gradient algorithm

The conjugate gradient algorithm minimizes the cost function J(p) successively along certain directions h i

(Press et al., 1992). Any iteration step i (i = 1, . . .) arrives at the parameter value pi by minimization along
hi−1,

pi = pi−1 + xihi−1 (62)

with pi−1 and hi−1 from the previous step (and the step length xi yet to be found). The new direction for the
next step is

hi = gi + γihi−1 (63)

where gi = g(pi) is the negative gradient

g(p) := −∂J(p)

∂pT

= −Ap + b (64)

at point pi. The essence of the method is the factor

γi =
gT

i gi

gT
i−1gi−1

. (65)

It ensures that the directions of the individual iteration steps are pairwise conjugate,

hT
i Ahj = 0 ∀i 6= j. (66)

This conjugacy has an illustrative interpretation: In the absence of the ‘prior term’ (the pTp in J , or the 1 in A,
Eqn. (17), which could be neglected if a-priori uncertainties are large), conjugacy of the parameter directions
hi implies orthogonality of the corresponding directions Q

−1/2
m AFhi in (normalized) concentration space.
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This means that each conjugate step is maximally efficient because it explores completely new concentration
information. In addition to the conjugacy of the hi, the gradients gi are orthogonal to each other,

gT
i gj = 0 ∀i 6= j. (67)

The algorithm is started at some point p0 into the direction of the negative gradient there,

h0 = g0. (68)

For non-linear problems, the step length xi would have to be searched for by line-minimization along hi−1.
In the linear problem with the purely quadratic cost function, the step length xi can be found analytically from
the condition

∂

∂xi
J(pi−1 + xihi−1) = 0 (69)

which is equivalent to
gT

i hi−1 = 0. (70)

The step length is thus given by

xi =
1

ki
hT

i−1gi−1 (71)

with ki being the curvature of the cost function along hi−1,

ki =
∂2

∂x2
i

J(pi−1 + xihi−1) (72)

= hT
i−1Ahi−1 (73)

The curvature does not depend on p, but only on the direction h. The negative gradient at the new point is

gi = gi−1 − xiAhi−1 (74)

The iteration steps can be calculated without having to explicitly generate and store the large matrix A,
because all what is needed in Eqns. (73) and (74) is the products

li = Ahi−1. (75)

At start-up of the iteration, one also needs the initial gradient

g0 = −Ap0 + b. (76)

For later use, the following matrix notation is introduced. After iteration step i has been completed, all
directions explored so far are summarized into the matrix

Hi = (h0, . . . ,hi−1) , (77)

and the corresponding products into
Li = (l1, . . . , li) = AHi. (78)

In this matrix notation, the conjugacy simply means that the (i × i)-matrix

Ki := HT
i Li (79)

is diagonal. Further, the state arrived at by iteration i can be written as

pi = p0 + Hixi. (80)
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5.2 Numerical implementation of A
With Eq. (17), the product in Eq. (75) reads

li = FTATQ−1
m AFhi−1 + hi−1. (81)

It is obtained by the following steps:

1. Fhi−1 by matrix multiplication (which is not as involved as a full multiplication because F is defined as
a product of block matrices, see Sect. 3);

2. AFhi−1 by a forward run of the atmospheric tracer transport model;

3. Q−1
m AFhi−1 by matrix multiplication (which is fast because Qm is assumed diagonal);

4. ATQ−1
m AFhi−1 by an adjoint run of the transport model;

5. FTATQ−1
m AFhi−1 again by matrix multiplication (‘adjoint flux model’).

The initial gradient
g0 = FTATQ−1

m (cobs −A[ffix + Fp0] − cini) − p0 (82)

is calculated in a similar way.

5.3 Starting point

In most cases, the iteration has been started at p0 = 0, i.e., from the a-priori fluxes. Then, h0 = g0 = b,
and the first iterate p1 is proportional to b which corresponds to approximating the Hessian by its a-priori part,
A ≈ 1. Many of the method extensions described below take easiest form if p0 = 0.

There is some potential to save iterations (computing time) by starting at some pre-optimized state, such
as an estimate obtained with a transport model on lower spatial resolution. During sensitivity testing, one may
also start at the result of some previous run with similar settings (flux model, data, etc.). However, contrary
to optimistic expectations, CPU time savings are only moderate. This is because the majority of iterations are
typically spent on relatively small changes at finer spatial or temporal scales.

5.4 Diagnostics

5.4.1 Convergence diagnostics

The values Ji = J(pi) of the cost function itself are not actually needed in the iteration, but can be used as a
diagnostic for its progress. By iteration step i, the cost function is diminished by

Ji = Ji−1 −
1

2
x2

i ki. (83)

The absolute value of the cost function is only defined up to an additive constant; at the starting point, it is set
to

J0 =
1

2
(cobs −A[ffix + Fp0] − cini)

TQ−1
m (cobs −A[ffix + Fp0] − cini) +

1

2
pT

0 p0 (84)

(see Eqn. (19)), calculated as a by-product of Eqn. (82). The iteration could be terminated if

2|Ji − Ji−1| ≤ θ
(

|Ji| + |Ji−1|
)

(85)

with a relative tolerance of, e.g., θ = 10−5. This is not an optimal criterion, as it involves some arbitrariness
(due to the undefined additive constant in J , and the dependence of Eqn. (84) on p0), and as it is not directly
linked to precision.

A more direct way to measure the iteration’s progress, would be to look at the evolution of selected func-
tionals of the flux (cmp. Sect. 1.6). The selection of such functionals should reflect the quantities on interest.
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Figure 2: Diagnostical quantities in the course of the iteration. Left: Convergence diagnostics. Right: Consis-
tency diagnostics.

The set chosen here comprises the interannual flux anomaly in all TransCom-3 regions in a certain reference
year (specifically, the IAV-filtered flux [standard filter ‘Filt0.5gd’] taken at time te−1.5 yr, i.e., in the middle of
the one-but-last year), plus the time-mean flux in all TransCom-3 regions (44 functionals in total). The iteration
may be terminated if any of the relative flux functionals from Eqn. (25)

fT
i zj

√
1
µzT

j FFTzj

(86)

(normalized by the a-priori standard deviation from Eqn. (26)) attains a stable value. The disadvantage of this
criterion is that it is specific to the chosen functionals, though it seems that convergence is quite similar among
the relevant choices zj .

Another, again global, measure of convergence is the length of the negative gradient gi, because, according
to Eqn. (64), it is also the residual of Eqn. (21) to be solved. The iteration may be terminated as soon as the
relative residual index

RIi =
gT

i gi

gT
0 g0

(87)

becomes smaller than a given tolerance. Again, this does not provide a fully objective criterion, because it
depends on the starting point p0. If p0 = 0 (and consequently g0 = b), a useful tolerance is 10−5, which has
actually been used in the runs presented here. However, the value of the tolerance was chosen based on the
previously described convergence indices.
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Figure 3: Development of selected scalar functionals of the flux, normalized as in Eqn. (86), in the course of the iteration.
Left: Functionals are IAV anomalies in the 22 TransCom-3 regions at some reference time. Right: Functionals are long-
term fluxes in the 22 TransCom-3 regions.

Generally, more iterations than necessary are spent. For security, termination is also invoked if the gradient
becomes exactly zero, or if more than a maximum number of iterations (e.g., 150) have been performed.

An additional diagnostic of progress is the null-space index, defined as

NSIi =
hT

i−1F
TATQ−1

m AFhi−1

hT
i−1hi−1

. (88)

It quantifies the relative contribution of the data part of the cost function in the step along hi−1. It will be zero if
the direction hi−1 lies in the null-space of the matrix M = Q

−1/2
m AF. A small NSIi implies that any change

along hi−1 in the parameter space only corresponds to a small change Mhi−1 in data space, i.e., this search
direction is not well ‘seen’ by the concentration data (given the atmospheric transport and the flux model), but
only constrained by the a-priori term. Therefore, if NSIi stops to decrease, the solution will not be improved
substantially any more by further iterations.

5.4.2 Consistency diagnostics

The degree to which directions are conjugate numerically, is measured by the conjugacy index

CIi = max
j<i

hT
i Ahj

√

hT
i hi

√

hT
j hj

. (89)

As described later, precautions are necessary to ensure that conjugacy is sufficiently valid.
The algorithm assumes a symmetric matrix A, which is the case if the adjoint model AT was a perfect

transpose of the forward model A. The symmetry index

SY Ii =

∣
∣
∣
∣
∣

(Q
−1/2
m AFhi−1)

T(Q
−1/2
m AFhi−1)

hT
i−1F

TATQ−1
m AFhi−1

− 1

∣
∣
∣
∣
∣

(90)

measures any deviation from this symmetry, because the denominator depends on both the forward and adjoint
models, while the –analytically identical– numerator only depends on the forward model. The symmetry index
is calculated as a by-product of li.
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5.5 Approximation of the inverse Hessian matrix

For the calculation of a-posteriori uncertainties, Eqn. (24), as well as for the numerical improvements of the
iteration described below, (approximate) solutions p[j] to

Ap[j] = b[j] (91)

are needed, where the b[j] represent arbitrary given right-hand sides (not necessarily related to the original right-
hand side b of Eqn. (21)). After iteration i has been completed (i.e., all the directions Hi have been explored),
all available information about A is contained in Li = AHi (and the resulting Ki = HT

i Li). Analogously to
Eqn. (80), the ansatz

p
[j]
i = p

[j]
0 + Hix

[j] (92)

is used, where p
[j]
0 is a ‘first guess’ about p[j] (not necessarily related to p0), and Hix

[j] is a correction of
p

[j]
0 along all the directions Hi available up to now. If this correction is optimal, then the residual between

this approximation p
[j]
i and the true solution p[j] lies in the space of those directions not yet explored by the

iteration; therefore, it has to be conjugate to Hi,

HT
i A(p

[j]
i − p[j]) = 0. (93)

This leads to
p

[j]
i = p

[j]
0 + HiK

−1
i HT

i b[j] −HiK
−1
i LT

i p
[j]
0 . (94)

Since Ki is diagonal due to conjugacy, the inverse K−1
i is easy to compute.

Below, we also encounter the case that b[j] is given indirectly through a quantity

g
[j]
0 = −Ap

[j]
0 + b[j]. (95)

Then, Eqn. (94) becomes
p

[j]
i = p

[j]
0 + HiK

−1
i HT

i g
[j]
0 . (96)

5.6 Ensuring conjugacy

Though in theory the conjugacy Eqn. (66) follows from the construction of the algorithm, there is a numerical
complication, arising from the large condition number of A. The lengths of the vectors hi (as well as those of
li, gi, and the curvature ki) change by several orders of magnitude in the course of the iteration. This is then
also the ratio between the individual components of these vectors. In the straightforward implementation of the
algorithm described above, this leads to roundoff errors, also by summing up smaller and smaller contributions
to p and g. This causes the conjugacy and orthogonality conditions to be increasingly violated. Although
the cost function minimum will, nevertheless, still be found, it will take the algorithm a considerably greater
number of iterations.

As a remedy, one can enforce conjugacy, as follows. Assume that iteration i has been completed, such that
Hi, Li, and Ki are available. The current state pi, the negative gradient gi, and the cost function value Ji are
then recomputed by

pi = p0 + HiK
−1
i HT

i g0, (97)

gi = g0 − LiK
−1
i HT

i g0, (98)

and
Ji = J0 −

1

2
g0HiK

−1
i HT

i g0 (99)

which follows from Eqn. (94) with the initial point p0 of the iteration as ‘first guess’, together with Eqn. (76).
The new direction hi is then calculated by

hi =
[

1−HiK
−1
i LT

i

]

gi (100)
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which is equivalent to Eqn. (63). The matrix in brackets is the projection onto the space conjugate to all previous
directions Hi.

To improve numerical accuracy, the sums implied in the matrix products of Eqns. (97), (98), and (99) are done with
decreasing indices (smallest terms first). Further, noting that (p0,g0) can be replaced by any (pj ,gj) along the course of
the iteration, the formulas are applied twice. Moreover, the projection of Eqn. (100) is done in the form

hi =

i−1∏

j=0

[

1− hjk
−1
j lTj

]

gi (101)

with increasing indices j, and repeated, too.

5.7 Approximating the a-posteriori covariance matrix

As the a-posteriori (co)variances from Eqn. (27) involve A−1, they can be obtained from a solution of Eqn.
(91), with the r.h.s.

b[j] = FTzj =⇒ p[j] = A−1FTzj . (102)

Here, the zj denote a chosen set of spatio-temporal integration patterns for which (co)variances are to be
calculated, such as the scalars mentioned in Sect. 1.6. In the above equation, the adjoint flux model FT is
applied to each of the patterns zj .

If the ‘first guess’ p
[j]
0 = 0 would be used, Eqn. (94) would give the approximation

zT
1 FA−1FTz2 ≈ zT

1 FHiK
−1
i HT

i FTz2

where z1 and z2 stand for two arbitrary ones of the chosen patterns zj . This approximation will underestimate
the (co)variances, because it only contains contributions from the directions contained in H i, while all other
directions appear to be infinitely well constrained. With the ‘first guess’ p

[j]
0 = 1

µb[j] = 1
µFTzj , one obtains

zT
1 FA−1FTz2 ≈ 1

µ
zT
1 FFTz2 −

1

µ
zT
1 FHiK

−1
i LT

i FTz2 + zT
1 FHiK

−1
i HT

i FTz2. (103)

This first guess is more relevant because p
[j]
0 then corresponds to the approximation A ≈ µ1, which, by

comparison of Eqns. (6) and (24), means Qf ,post ≈ Qf ,pri. Eqn. (103) now corrects this first guess along any
directions spanned by Hi, where uncertainty has been reduced by the inversion. Along all other directions
of the parameter space, the approximate a-posteriori covariance matrix will still coincide with the a-priori
covariance matrix, which is indeed appropriate for all directions not constrained by the data (prior-constrained,
small null-space index) and therefore not gone by the iteration. Still, if Hi misses any relevant directions, Eqn.
(103) will overestimate uncertainties. As has been checked with a few-parameter case where uncertainties can
be calculated exactly by the traditional SVD, this overestimation is by far not negligible. This means that,
unfortunately, the set of directions hi sufficient to solve for ppost does not contain all the directions relevant to
solve for p[j].

However, the approximate (co)variances can be improved to any accuracy by continuing the iteration: That
way, information about A along any missing directions hi′ is obtained. This can be done using the algorithm
of Sect. 5.6: Since the recomputed state pi as well as the next direction hi just depend on the present Hi, Li,
and on the pair of initial state and gradient (p0,g0), this pair can be exchanged by (0,b[j]) to switch to a new
r.h.s. b[j] (and zero starting point, cmp. Eqn. (76)). Specifically, after completion of the main iteration solving
for ppost, a new r.h.s. b[1] = FTz1 corresponding to the first of the chosen integrations/filters is switched to,
and iterated into convergence. This is continued in turn for all zj . Of course, the number of these patterns has
to be small in order to be feasible. However, the number of additional iterations needed decreases from pattern
to pattern, because of the information (products Ahi along directions hi) already present.

5.8 Varying the a-priori scaling µ

As discussed in Sect. 1.7, the scaling parameter µ of the Bayesian a-priori term is interesting to be varied in the
course of sensitivity testing. There is a way to do this without repeating the expensive full iteration.
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Suppose that the iteration has been conducted with value µ of the parameter, and the matrices Hi and Li

are available. Changing the parameter into µ̃ changes the Hessian into

Ã = A + (µ̃ − µ)1. (104)

If the set of directions is kept, H̃i = Hi, a new matrix replacing Li is

L̃i = ÃH̃i

= Li + (µ̃ − µ)Hi. (105)

Of course, the (old) directions Hi will not be conjugate with respect to the new Hessian Ã, i.e., the matrix
K̃i = H̃T

i L̃i is no longer diagonal. Nevertheless, p̃i can still be computed by Eqn. (97) using the tilde’d
quantities (note that g̃0 = g0 − (µ̃−µ)p0). The only difference is that the evaluation of terms containing K̃−1

i

now requires a library call to some linear systems solver. This is no problem, however, because the dimension
of K̃i is only the number of iterations, which is much smaller than the number of parameters. Likewise, the
formula of Sect. 5.7 to compute (co)variances can still be used.

The question remains whether Hi from the converged µ-iteration actually also contains all the search di-
rections necessary for the case of µ̃. Luckily, as long as a-priori damping is increased (i.e., µ̃ > µ), this
requirement is fulfilled, because a larger µ requires less directions. This has also been confirmed by direct
comparison7 .

In order to simultaneously calculate solutions for a variety of µ̃ values, the actual iteration can even be done
with µ = 0 (even though the analytic solution would diverge then). The larger µ̃, the earlier the corresponding
solution will converge (such that the iteration can be stopped according to the smallest µ̃ of interest). This is
also related to the regularizing property of the conjugate gradients method (Hansen, 1998).

7Unfortunately, this easy change of scaling only works for the overall scaling parameter µ, not however for the scaling parameters
αi of the individual flux components, or any other detail of the flux model. This is because any change in the ratios of different a-priori
constraints would require further state space directions to be sampled.
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A Time series filtering

A.1 Fourier decomposition

The construction of both fixed and variability terms in the flux model, as well as the presentation of results,
may involve time series filtering. For a given (possibly space-dependent) flux time series f(x, y, t), filtering is
done here in terms of weighted Fourier expansions,

f (filter)(x, y, t) = w
(filter)
0 fave(x, y) (106)

+

∞∑

k=1

w(filter)(νk)
(

f cos,k(x, y) cos(2πνkt) + f sin,k(x, y) sin(2πνkt)
)

where w(filter)(ν) is the chosen filter function. The frequencies are

νk = k/T (107)

(in 1/yr) where T = te − ti is the time period of the inversion (in years). In Eqn. (106), the sum over k does not
actually go to ∞ but stops at a highest frequency set by the time resolution of fluxes (here 1 day). The Fourier
coefficients are obtained from the original time series f(x, y, t) by

f cos,k(x, y) =
2

t2 − t1

∫ t2

t1

cos(2πνkt)f(x, y, t)dt, (108)

f sin,k(x, y) =
2

t2 − t1

∫ t2

t1

sin(2πνkt)f(x, y, t)dt, (109)

if f(x, y, t) is given over the time interval t1 through t2. Generally, t1 and t2 coincide with the start and end
times of the inversion period, ti and te. (If filtering is used to get mean fluxes or mean seasonal cycles from
external input data, and if the inversion period T = te − ti is short, one might want to improve statistics by
using a longer part of the input data set f(x, y, t), if available. Also, it might be desirable to fix t1 and t2 in
order to make the Fourier coefficients independent of the particular inversion period, if inversions of different
lengths are to be compared.) However, these formulas only work if

2k(t2 − t1) (110)

is an integer multiple of T (for the seasonal frequencies νk = 1/yr, 2/yr, 3/yr, . . ., this condition is sure to
be fulfilled). We preferred to use the definitions Eqns. (108) and (109) over the usual FFT method, because
they are more simple to be handled given the variety of time intervals and/or sampling distances occurring in
available input data sets. They can be calculated efficiently by employing the addition theorems

cos(2πνkt) = cos(2πνk−1t) cos(2πν1t) − sin(2πνk−1t) sin(2πν1t) (111)

sin(2πνkt) = sin(2πνk−1t) cos(2πν1t) + cos(2πνk−1t) sin(2πν1t) (112)

in the calculation of all higher-order triangular functions (Press et al., 1992). The long-term average is

fave(x, y) =
1

t2 − t1

∫ t2

t1

f(x, y, t)dt. (113)

A.2 Specific filters

All filters used in the present calculations are defined here in terms of their spectral weights. They are shown
in Fig. 18, together with their corresponding pulse response functions.
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Gaussian (‘g’):

wg(ν; νsigma) = exp

(

− ν2

2(νsigma)2

)

(114)

Gaussian, deseasonalized (‘gd’):

wgd(ν; νsigma) =

{
0, (ν = 1/yr, 2/yr, 3/yr, . . .)

wg(ν; νsigma), (else)
(115)

This is the standard IAV filter in time series figures (then with ν sigma = 0.5/yr).

Triangular (‘t’): The following low-pass filter (with parameter ν low) corresponds in the time domain to a trian-
gular response function that linearly rises/falls away from the central peak and reaches zero at ±1/ν low.

wt(ν; ν low) =
2

(2π)2

(
ν low

ν

)2 (

1 − cos
(

2π
ν

ν low

))

. (116)

It removes essentially all frequencies ν low and higher (the cut-off frequency ν low itself and all its multi-
ples are removed completely, other frequencies higher than ν low pass with at most 5% amplitude).

Truncated triangular (‘T’): The standard low-pass filter used in the adjustable terms of the flux model is the
‘t’ one, where additionally all frequencies above ν low are removed completely.

wT(ν; ν low) =

{
wt(ν; ν low), (ν < ν low)

0, (else)
(117)

Truncated triangular, deseasonalized (‘Td’):

wTd(ν; ν low) =

{
0, (ν = 1/yr, 2/yr, 3/yr, . . .)

wT(ν; ν low), (else)
(118)

Truncated triangular, mean seasonal cycle (‘Ts’):

wTs(ν; ν low) =

{
wT(ν; ν low), (ν = 1/yr, 2/yr, 3/yr, . . .)

0, (else)
(119)

In numerical filtering, spectral components are omitted (filter weights are set zero) if w(ν) < 0.01.
The nomenclature used to refer to these filters in this report, consists of ‘Filt’ followed by the value of

the characteristic frequency (ν sigma or ν low, respectively) and the short-hand label given above. Examples are
‘Filt0.5gd’ or ‘Filt1.0T’.
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1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016
year (A.D.)

 

 

 

fxALTa CSIRO
fxALTc CMDL
dvALTm MSC
dvAMSl LSCE
fxASCc CMDL
fxASKc CMDL
fxAZRc CMDL
fxBALc CMDL
dvBHDx NIWA
fxBMEc CMDL
fxBMWc CMDL
fxBRWc CMDL
hvBRWc CMDL
hvBRWc+fxBRWc
fxBSCc CMDL
fxCBAc CMDL
fxCFAa CSIRO
fxCGOa CSIRO
fxCGOc CMDL
fxCHRc CMDL
fxCMOc CMDL
dvCPTx SAWS
fxCRZc CMDL
fxEICc CMDL
fxESPa CSIRO
fxESPm MSC
fxGMIc CMDL
fxHBAc CMDL
fxHUNc CMDL
fxICEc CMDL
fxITNc CMDL
fxIZOc CMDL
fxKEYc CMDL
fxKUMc CMDL
fxLEFc CMDL
fxMAAa CSIRO
fxMBCc CMDL
fxMHDc CMDL
fxMIDc CMDL
fxMLOa CSIRO
fxMLOc CMDL
hvMLOc CMDL
hvMLOc+fxMLOc
hvMNMj JMA
fxMQAa CSIRO

S
O

86a
S

O
91a

S
O

96a
M

96a

# meas./month:   1-  2   3-  8   9- 20  21-

Figure 4: CO2 concentration records (to be continued on next page). The left part shows the time coverage. The coloured
stars on the right side group the records into sets used in different inversion runs.
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Figure 4: (continued) CO2 concentration records.
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NEE (long-term) Ocean exchange (long-term)

NEE (seasonal) Ocean exchange (seasonal)

NEE (interannual) Ocean exchange (interannual)

Figure 5: Local/instantaneous a-priori standard deviations [µmol/m2/s] for the adjustable terms of the flux components
in the standard CO2 flux model. They are defined through the ‘shapes’ fsh,nee,lt(x, y, t), etc. The stripe structure in some
maps only results from small numerical deviations in the normalization due to the aggregated pixels (cmp. Sect. 3.3.1).
A-priori standard deviations only have spatial structure, but are constant in time.
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NEE Ocean exchange

Figure 6: Regular grid of regions used in the standard CO2 flux model. Colours repeat every 5 or 11 regions; in some
lines, neighbouring regions happen to have equal colours.

NEE (long-term/interannual) Ocean exchange (long-term/interannual)

Figure 7: Top: Two representative examples of individual spatial elements gspace
ms,i

(x, y) for long-term and interannual
NEE or Ocean flux components, respectively. Bottom: Correlation coefficients with respect to the center locations of
these elements, as implied by the respective sets {gspace

ms,i
(x, y)} of spatial elements.
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NEE (seasonal) Ocean exchange (seasonal)

Figure 8: As Fig. 7, but for the seasonal NEE or Ocean flux components.
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Figure 9: A-priori Fourier spectra used for the seasonal and interannual components in the standard set-up. The interan-
nual spectrum has been varied in two sensitivity cases (‘fast’ and ‘slow’, Sect. 3.4.2).
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NEE (long-term/interannual) Ocean exchange (long-term/interannual)

NEE (seasonal) Ocean exchange (seasonal)

Figure 10: Correlation coefficients with respect to two example locations (as in Fig. 7) for the ‘long’ sensitivity set-up
(Sect. 3.4.2).

Figure 11: Map of the TransCom-3 regions (Gurney et al., 2002) over which the estimated fluxes are integrated to obtain
time series. Note that neighbouring land and ocean regions actually overlap each other beyond the coast line, with the
integration of fluxes being done separately for the individual flux components, according to whether they refer to land or
ocean processes. The apparent coast lines shown here correspond to a land/water map at the standard resolution of the
transport model.
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Figure 12: Estimated fluxes based on different sets of observation sites. Fluxes are IAV-filtered (‘Filt0.5gc’). Part I.
Fluxes integrated over the TransCom-3 land regions.
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Figure 12: Part II. Fluxes integrated over the TransCom-3 ocean regions.
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Figure 13: As Fig. 12, but full temporal variability, shown for a 4 years’ period. Part I. Fluxes integrated over the
TransCom-3 land regions.
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Figure 13: Part II. Fluxes integrated over the TransCom-3 ocean regions.
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Figure 14: Several measures of uncertainty of the interannual variations estimated by the inversion. The red line sur-
rounded by the gray shading gives the standard result (interannual components only, deseasonalized and filtered), together
with its a-posteriori ±1σ interval (calculated at the reference time 2001.5). The a-priori fluxes and their corresponding
±1σ intervals are given by the black line with error bar. The ensemble of thin (gray) lines shows the spread of results due
to change of individual set-up details in the sensitivity testing. Three particular sensitivity cases are marked by thin color
lines. For efficiency, these runs have been done using the coarse grid transport model.
Part I. Fluxes integrated over the TransCom-3 land regions.
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Figure 14: Part II. Fluxes integrated over the TransCom-3 ocean regions.
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Figure 15: As Fig. 14, but full temporal variability. ±1σ intervals are not available here. Part I. Fluxes integrated over
the TransCom-3 land regions.

50



MPI-BGC Tech Rep 6: Rödenbeck, 2005
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Figure 15: Part II. Fluxes integrated over the TransCom-3 ocean regions.
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Figure 16: Matrices of a-priori and a-posteriori error correlation coefficients (standard set-up, coarse grid transport). Row
and column indices refer to the fluxes integrated over individual TransCom-3 regions, further split into the interannual flux
components (filtered with Filt1.0T, reference time 2001.5, indices 1–22) and the long-term components (indices 23–44):

1 23 North American Bor.
2 24 North American Temp.
3 25 South American Trop.
4 26 South American Temp.
5 27 Northern Africa
6 28 Southern Africa
7 29 Eurasian Boreal
8 30 Eurasian Temperate
9 31 Tropical Asia

10 32 Australia
11 33 Europe
12 34 North Pacific Temp.
13 35 West Pacific Tropics
14 36 East Pacific Tropics
15 37 South Pacific Temp.
16 38 Northern Ocean
17 39 North Atlantic Temp.
18 40 Atlantic Tropics
19 41 South Atlantic Temp.
20 42 Southern Ocean
21 43 Indian Trop. Ocean
22 44 S.Indian Temp. Ocean
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Figure 17: Comparison of different time series filters: Standard filter used here (‘Filt0.5gd’), box-car filter (running
annual sums), and self-deseasonalizing triangular filter (‘Filt1.0T’). Filters are defined in Appendix A.2 and illustrated in
Fig. 18. Fluxes shown for 2 selected TransCom-3 regions.
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Figure 18: Example filters used in the ‘flux model’ or for smoothing. Filter properties are given as spectral weights (left)
or corresponding pulse response functions (right).
Upper row: Theoretical relations from Appendix A.
Lower row: Discrete numerical representations used in Fig. 17, and their numerical Fourier back-transformations obtained
by filering a Dirac pulse δ(t − tr) centered at the reference time tr = 2001.5 [for boxcar, filtering is numerically done in
the time domain]. High-frequency values missing in the numerical spectra are zero.
Note that the Gaussian filter (red) is deseasonalizing in the lower row (Filt0.5gd), but not in the upper (Filt0.5g).
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