17 research outputs found

    Ecology and application of haloalkaliphilic anaerobic microbial communities

    Get PDF
    Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.This work was performed in the TTIW- cooperation framework of Wetsus, European Centre of Excel- lence for Sustainable Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslân, the City of Leeuwarden and the EZ/Kompas program of the“ Samenwerkingsverband Noord-Nederland”. The authors would like to thank the participants of the research theme "Sulfur", namely Paqell, for fruitful discussions and financial suppor

    Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life

    Get PDF
    Since a key requirement of known life-forms is available water (water-activity; aw), searches for signatures of past life in terrestrial and extraterrestrial environments have recently targeted places known to have contained significant quantities of biologically available water. The lower limit of water activity that enables cell division is ~0.605 which, until now, was only known to be exhibited by a single eukaryote; the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, however, prokaryotic. Furthermore, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water activity. Recent evidence indicates that some halophilic Archaea and Bacteria have water activity limits more or less equal to those of X. bisporus. Regardless of species, cellular systems are sensitive to minute differences in water activity (of w-units) so there is a need to determine water-activity values to three decimal places. We discuss water activity in relation to the limits of Earth’s present-day biosphere; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources; whether prokaryotes were the first organisms able to multiply at the 0.605-aw limit; and whether extraterrestrial aqueous milieu of ≥0.605 aw can resemble fertile microbial habitats found on Earth

    Drop-Size Soda Lakes: Transient Microbial Habitats on a Salt-Secreting Desert Tree

    No full text
    We describe a hitherto unrecognized bacterial community, inhabiting the leaf surfaces of the salt-excreting desert tree Tamarix. High temperatures, strong radiation, and very low humidity dictate a daytime existence in complete desiccation, but damp nights allow the microbial population to proliferate in a sugar-rich, alkaline, and hypersaline solution, before drying up again after sunrise. The exclusively bacterial population contains many undescribed species and genera, but nevertheless appears to be characterized by relatively limited species diversity. Sequences of 16S rRNA genes from either isolates or total community DNA place the identified members of the community in five bacterial groups (Actinobacteria, Bacteroidetes, Firmicutes, α-, and γ-Proteobacteria); in each of these, they concentrate in a very narrow branch that in most cases harbors organisms isolated from unrelated halophilic environments

    Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree

    No full text
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 77 (2011): 7647-7655, doi:10.1128/AEM.05565-11.The leaf surfaces of Tamarix, a salt secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique set of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel, and in two locations in the USA. Over 200,000 sequences of the 16S-V6 and 18S-V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera, but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria, whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales. Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.Research was supported in part by the US-Israel Binational Science Foundation grant number 2006324 to SB and SEL. OF and SB are indebted to the Gruss-Lipper Family Foundation for summer research fellowships (2009 and 2010) at the Marine Biology Laboratory (Woods Hole, MA, USA) that supported pyrosequencing and data analysis
    corecore