11 research outputs found
Biased-corrected richness estimates for the Amazonian tree flora
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The percentages of dispersal modes per plot are included as Supporting Information (Table S7, based on 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests in Amazonia). The dispersal modes assigned to these 5433 species and morphospecies are also included as Supporting Information (Table S8).Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types.Colombian institution Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIASFaculty of Sciences, Universidad de los Ande
Association between breakfast frequency and physical activity and sedentary time : a cross-sectional study in children from 12 countries
BackgroundExisting research has documented inconsistent findings for the associations among breakfast frequency, physical activity (PA), and sedentary time in children. The primary aim of this study was to examine the associations among breakfast frequency and objectively-measured PA and sedentary time in a sample of children from 12 countries representing a wide range of human development, economic development and inequality. The secondary aim was to examine interactions of these associations between study sites.MethodsThis multinational, cross-sectional study included 6228 children aged 9-11years from the 12 International Study of Childhood Obesity, Lifestyle and the Environment sites. Multilevel statistical models were used to examine associations between self-reported habitual breakfast frequency defined using three categories (breakfast consumed 0 to 2days/week [rare], 3 to 5days/week [occasional] or 6 to 7days/week [frequent]) or two categories (breakfast consumed less than daily or daily) and accelerometry-derived PA and sedentary time during the morning (wake time to 1200h) and afternoon (1200h to bed time) with study site included as an interaction term. Model covariates included age, sex, highest parental education, body mass index z-score, and accelerometer waking wear time.ResultsParticipants averaged 60 (s.d. 25) min/day in moderate-to-vigorous PA (MVPA), 315 (s.d. 53) min/day in light PA and 513 (s.d. 69) min/day sedentary. Controlling for covariates, breakfast frequency was not significantly associated with total daily or afternoon PA and sedentary time. For the morning, frequent breakfast consumption was associated witha higher proportion of time in MVPA (0.3%), higher proportion of time in light PA (1.0%) and lower min/day and proportion of time sedentary (3.4min/day and 1.3%) than rare breakfast consumption (all p0.05). No significant associations were found when comparing occasional with rare or frequent breakfast consumption, or daily with less than daily breakfast consumption. Very few significant interactions with study site were found.ConclusionsIn this multinational sample of children, frequent breakfast consumption was associated with higher MVPA and light PA time and lower sedentary time in the morning when compared with rare breakfast consumption, although the small magnitude of the associations may lack clinical relevance.Trial registrationThe International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) is registered at(Identifier NCT01722500).Peer reviewe
Recommended from our members
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
Publication status: PublishedFunder: Conselho Nacional de Desenvolvimento Científico e Tecnológico; doi: http://dx.doi.org/10.13039/501100003593Funder: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; doi: http://dx.doi.org/10.13039/501100002322Funder: Fundação de Amparo à Pesquisa do Estado de São Paulo; doi: http://dx.doi.org/10.13039/501100001807Funder: HORIZON EUROPE Marie Sklodowska‐Curie ActionsAbstractAimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega‐phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white‐sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long‐standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.</jats:sec
A model for presenting accelerometer paradata in large studies: ISCOLE
Background: We present a model for reporting accelerometer paradata (process-related data produced from survey administration) collected in the International Study of Childhood Obesity Lifestyle and the Environment (ISCOLE), a multi-national investigation of >7000 children (averaging 10.5 years of age) sampled from 12 different developed and developing countries and five continents. Methods: ISCOLE employed a 24-hr waist worn 7-day protocol using the ActiGraph GT3X+. Checklists, flow charts, and systematic data queries documented accelerometer paradata from enrollment to data collection and treatment. Paradata included counts of consented and eligible participants, accelerometers distributed for initial and additional monitoring (site specific decisions in the face of initial monitoring failure), inadequate data (e.g., lost/malfunction, insufficient wear time), and averages for waking wear time, valid days of data, participants with valid data (>4 valid days of data, including 1 weekend day), and minutes with implausibly high values (>20,000 activity counts/min). Results: Of 7806 consented participants, 7372 were deemed eligible to participate, 7314 accelerometers were distributed for initial monitoring and another 106 for additional monitoring. 414 accelerometer data files were inadequate (primarily due to insufficient wear time). Only 29 accelerometers were lost during the implementation of ISCOLE worldwide. The final locked data file consisted of 6553 participant files (90.0% relative to number of participants who completed monitoring) with valid waking wear time, averaging 6.5 valid days and 888.4 minutes/day (14.8 hours). We documented 4762 minutes with implausibly high activity count values from 695 unique participants (9.4% of eligible participants and <0.01% of all minutes). Conclusions: Detailed accelerometer paradata is useful for standardizing communication, facilitating study management, improving the representative qualities of surveys, tracking study endpoint attainment, comparing studies, and ultimately anticipating and controlling costs
Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics