252 research outputs found

    Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals

    Get PDF
    Average hydroxyl radical (OH) to chlorine atom (Cl·) ratios ranging from 45 to 119 were determined from variability‐lifetime relationships for selected nonmethane hydrocarbons (NMHC) in surface air from six different transport sectors arriving at Appledore Island, Maine, during July 2004. Multiplying these ratios by an assumed average OH concentration of 2.5 × 106 cm−3 yielded estimates of Cl· concentrations of 2.2 to 5.6 × 104 cm−3. Summed reaction rates of methane and more than 30 abundant NMHCs with OH and Cl· suggest that Cl· reactions increased the kinetic reactivity of hydrocarbons by 16% to 30% over that due to OH alone in air associated with the various transport sectors. Isoprene and other abundant biogenic alkenes were the most important hydrocarbon contributors after methane to overall kinetic reactivity

    Granice strefy Schengen a granice Unii Europejskiej – uwarunkowania normatywne

    Get PDF
    Legal conditions for the definition of internal and external borders in the European Union and Schengen area are regulated by the provisions of the Schengen Border Code, which is a specific constitution of the Schengen area, being also an integral part of the European Union law. The explanation of the legal basis of the internal and external borders of the Schengen and EU zones requires reaching to their legal etymology, starting from their formation up to their current status in a short reference to the migration crisis. The aim of the article is also to define the boundaries of the „area without borders”, especially in the context of the diverse situation at internal and external borders. The spread  of the European Union and the Schengen zone will be determined by means of legal indicators, the most important of which is the free movement of persons and the Area of freedom, security and justice. Full explanation of legal conditions of the borders involves referring to their crossing rules. To this end, it is necessary to distinguish the subjective and objective aspect of crossing internal and external borders based on EU law acts, in particular the amended in 2016 and 2017 provisions of the Schengen Border Code, which is a specific constitution of the Schengen area, which is also an integral part of European Union law. It should be argued that, in the legal dimension, the borders of the EU and the Schengen area are being unified, despite differences in the territorial dimension. Confirmation, already at the beginning, can be found in the revised SBC regulations, according to which a common policy of crossing external borders is a means of creating an area where people can move freely on the basis of treaty provisions. The provisions of the EU Code on the rules governing the movement of persons across borders emphasize that joint measures on crossing internal borders by persons and controls at external borders should reflect the Schengen acquis incorporated into the legal and institutional framework of the EU.Przedmiot artykułu stanowią uwarunkowania prawne definicji granic wewnętrznych i zewnętrznych w Unii Europejskiej i strefie Schengen oraz przełożenie ich na poszczególne rodzaje granic, z uwzględnieniem tych, na których sytuacja ulega zmianom w wyniku specyficznych uwarunkowań prawnych państwa oraz kryzysu migracyjnego. Artykuł wyjaśnia podstawy prawne granic wewnętrznych i zewnętrznych strefy Schengen i UE, rozpoczynając od ich kształtowania się aż do aktualnego statusu w krótkim odniesieniu do ich etymologii prawnej. Celem artykułu jest również określenie granic „obszaru bez granic”, zwłaszcza w kontekście zróżnicowanej sytuacji na granicach wewnętrznych i zewnętrznych. Artykuł obejmuje wyłącznie uwarunkowania normatywne, bez szerszych odniesień do aspektu terytorialnego, ze względu na rozległość tematu oraz ograniczenia tekstowe. Należy postawić tezę, że w wymiarze normatywnym granice UE i strefy Schengen ulegają ujednoliceniu, pomimo różnic w wymiarze terytorialnym. Przepisy unijnego kodeksu zasad regulujących przepływ osób przez granice podkreślają, że wspólne środki w zakresie przekraczania przez osoby granic wewnętrznych oraz kontroli na granicach zewnętrznych powinny odzwierciedlać acquis Schengen włączony w ramy prawne i instytucjonalne UE

    Nanoparticle growth following photochemical α‐ and β‐pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004

    Get PDF
    Nanoparticle events were observed 48 times in particle size distributions at Appledore Island during the International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens on the Isles of Shoals (ICARTT/CHAiOS) field campaign from 2 July to 12 August of 2004. Eighteen of the nanoparticle events showed particle growth and occurred during mornings when peaks in mixing ratios of α‐ and β‐pinene and ozone made production of condensable products from photochemical oxidation probable. Many pollutants and other potential precursors for aerosol formation were also at elevated mixing ratios during these events, including NO, HNO3, NH3, HCl, propane, and several other volatile organic carbon compounds. There were no consistent changes in particle composition, although both submicron and supermicron particles included high maximum concentrations of methane sulfonate, sulfate, iodide, nitrate, and ammonium during these events. Nanoparticle growth continued over several hours with a nearly linear rate of increase of diameter with time. The observed nanoparticle growth rates varied from 3 to 13 nm h−1. Apparent nanoparticle aerosol mass fractions (yields) were estimated to range from less than 0.0005 to almost 1 using α‐ and β‐pinene as the presumed particle source. These apparent high aerosol mass fractions (yields) at low changes in aerosol mass are up to two orders of magnitude greater than predictions from extrapolated laboratory parameterizations and may provide a more accurate assessment of secondary organic aerosol formation for estimating the growth of nanoparticles in global models

    Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals

    Get PDF
    Milder winters and extended wetter periods in spring and autumn limit the amount of time available for carrying out ground-based forest operations on soils with satisfactory bearing capacity. Thus, damage to soil in form of compaction and displacement is reported to be becoming more widespread. The prediction of trafficability has become one of the most central issues in planning of mechanized harvesting operations. The work presented looks at methods to model field measured spatio-temporal variations of soil moisture content (SMC, [%vol]) – a crucial factor for soil strength and thus trafficability. We incorporated large-scaled maps of soil characteristics, high-resolution topographic information – depth-to-water (DTW) and topographic wetness index – and openly available temporal soil moisture retrievals provided by the NASA Soil Moisture Active Passive mission. Time-series measurements of SMC were captured at six study sites across Europe. These data were then used to develop linear models, a generalized additive model, and the machine learning algorithms Random Forest (RF) and eXtreme Gradient Boosting (XGB). The models were trained on a randomly selected 10% subset of the dataset. Predictions of SMC made with RF and XGB attained the highest R2 values of 0.49 and 0.51, respectively, calculated on the remaining 90% test set. This corresponds to a major increase in predictive performance, compared to basic DTW maps (R2 = 0.022). Accordingly, the quality for predicting wet soils was increased by 49% when XGB was applied (Matthews correlation coefficient = 0.45). We demonstrated how open access data can be used to clearly improve the prediction of SMC and enable adequate trafficability mappings with high spatial and temporal resolution. Spatio-temporal modelling could contribute to sustainable forest management.publishedVersio

    Targeted Disruption of Toxoplasma gondii Serine Protease Inhibitor 1 Increases Bradyzoite Cyst Formation In Vitro and Parasite Tissue Burden in Mice

    Get PDF
    As an intracellular protozoan parasite, Toxoplasma gondii is likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities. T. gondii serine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces two TgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigate TgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles with Dolichos biflorus lectin under conditions promoting in vitro differentiation. The differentiation phenotype can be partially complemented by either TgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∼3-fold-increased parasite burden in the spleen and liver, and this in vivo phenotype is also complemented by either TgPI1 isoform. These results demonstrate that TgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases

    The geochemical cycling of reactive chlorine through the marine troposphere

    Get PDF
    Heterogeneous reactions involving sea‐salt aerosol in the marine troposphere are the major global source for volatile inorganic chlorine. We measured reactant and product species hypothesized to be associated with these chemical transformations as a function of phase, particle size, and altitude over the North Atlantic Ocean during the summer of 1988. Concentrations of HCl were typically less than 1.0 ppbv near the sea surface and decreased with altitude and with distance from the U.S. east coast. Concentrations of Cl volatilized from aerosols were generally equivalent to the corresponding concentrations of HCl and ranged from less than detection limits to 125 nmol m−3 STP. Highest absolute and percentage losses of particulate Cl were typically associated with elevated concentrations of anthropogenic combustion products. Concentrations of product nss SO42− and N03− in coarse aerosol fractions indicate that on average only 38% of measured Cl− deficits could be accounted for by the combined effects of acid‐base desorption and reactions involving nonacidic N gases. We hypothesize a mechanism for the Cl loss initiated by reaction of O3 at sea‐salt aerosol surfaces, generating Cl2 followed by rapid photochemical conversion of Cl2 to HCl via Cl atoms (Cl˙) and eventual recapture of HCl by the aerosol. Simulations with a zero‐dimension (0‐D) photochemical model suggest that oxidation by Cl˙ may be an important tropospheric sink for dimethyl sulfide and hydrocarbons. Under low‐NOx conditions, the rapid cycling of reactive Cl would provide a catalytic loss mechanism for O3, which would possibly explain the low O3 concentrations often observed above the world\u27s oceans

    Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented AErosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds

    Investigation of chlorine radical chemistry in the Eyjafjallajkull volcanic plume using observed depletions in non-methane hydrocarbons

    Get PDF
    As part of the effort to understand volcanic plume composition and chemistry during the eruption of the Icelandic volcano Eyjafjallajkull, the CARIBIC atmospheric observatory was deployed for three special science flights aboard a Lufthansa passenger aircraft. Measurements made during these flights included the collection of whole air samples, which were analyzed for non-methane hydrocarbons (NMHCs). Hydrocarbon concentrations in plume samples were found to be reduced to levels below background, with relative depletions characteristic of reaction with chlorine radicals (Cl). Recent observations of halogen oxides in volcanic plumes provide evidence for halogen radical chemistry, but quantitative data for free halogen radical concentrations in volcanic plumes were absent. Here we present the first observation-based calculations of Cl radical concentrations in volcanic plumes, estimated from observed NMHC depletions. Inferred Cl concentrations were between 1.3 × 10 and 6.6 × 10 Cl cm. The relationship between NMHC variability and local lifetimes was used to investigate the ratio between OH and Cl within the plume, with [OH]/[Cl] estimated to be ∼37. Copyright 2011 by the American Geophysical Union

    Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics

    Get PDF
    Distributions of aerosol-associated soluble ions over much of the South Pacific were determined by sampling from the NASA DC-8 as part of the Pacific Exploratory Mission (PEM) Tropics campaign. The mixing ratios of all ionic species were surprisingly low throughout the free troposphere (2-12 km), despite the pervasive influence from biomass burning plumes advecting over the South Pacific from the west during PEM-Tropics. At the same time, the specific activity of 7Be frequently exceeded 1000 fCi m-3 through much of the depth of the troposphere. These distributions indicate that the plumes must have been efficiently scavenged by precipitation (removing the soluble ions), but that the scavenging must have occurred far upwind of the DC-8 sampling regions (otherwise 7Be activities would also have been low). This inference is supported by large enhancements of HNO3 and carboxylic acids in many of the plumes, as these soluble acidic gases would also be readily scavenged in any precipitation events. Decreasing mixing ratios of NH4 + with altitude in all South Pacific regions sampled provide support for recent suggestions that oceanic emissions of NH3 constitute a significant source far from continents. Our sampling below 2 km reaffirms the latitudinal pattern in the methylsulfonate/non-sea-salt sulfate (MSA/nss SO4 =) molar ratio established through surface-based and shipboard sampling, with values increasing from \u3c0.05 in the tropics to nearly 0.6 at 70°S. However, we also found very high values of this ratio (0.2-0.5) at 10 km altitude above the intertropical convergence zone near 10°N. It appears that wet convective pumping of dimethylsulfide from the tropical marine boundary layer is responsible for the high values of the MSA/nss SO4 = ratio in the tropical upper troposphere. This finding complicates use of this ratio to infer the zonal origin of biogenic S transported long distances. Copyright 1999 by the American Geophysical Union

    Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer

    Get PDF
    Recent field studies have suggested that sea-salt particulate nitrate (NITs) photolysis may act as a significant local source of nitrogen oxides (NOx) over oceans. We present a study of the global impact of this process on oxidant concentrations in the marine boundary layer (MBL) using the GEOS-Chem model, after first updating the model to better simulate observed gas-particle phase partitioning of nitrate in the marine boundary layer. Model comparisons with long-term measurements of NOx from the Cape Verde Atmospheric Observatory (CVAO) in the eastern tropical North Atlantic provide support for an in situ source of NOx from NITs photolysis, with NITs photolysis coefficients about 25-50 times larger than corresponding HNO3 photolysis coefficients. Short-term measurements of nitrous acid (HONO) at this location show a clear daytime peak, with average peak mixing ratios ranging from 3 to 6 pptv. The model reproduces the general shape of the diurnal HONO profile only when NITs photolysis is included, but the magnitude of the daytime peak mixing ratio is under-predicted. This under-prediction is somewhat reduced if HONO yields from NITs photolysis are assumed to be close to unity. The combined NOx and HONO analysis suggests that the upper limit of the ratio of NITs : HNO3 photolysis coefficients is about 100. The largest simulated relative impact of NITs photolysis is in the tropical and subtropical marine boundary layer, with peak local enhancements ranging from factors of 5 to 20 for NOx, 1.2 to 1.6 for OH, and 1.1 to 1.3 for ozone. Since the spatial extent of the sea-salt aerosol (SSA) impact is limited, global impacts on NOx, ozone, and OH mass burdens are small ( ∼ 1-3 %). We also present preliminary analysis showing that particulate nitrate photolysis in accumulation-mode aerosols (predominantly over continental regions) could lead to ppbv-level increases in ozone in the continental boundary layer. Our results highlight the need for more comprehensive long-term measurements of NOx, and related species like HONO and sea-salt particulate nitrate, to better constrain the impact of particulate nitrate photolysis on marine boundary layer oxidant chemistry. Further field and laboratory studies on particulate nitrate photolysis in other aerosol types are also needed to better understand the impact of this process on continental boundary layer oxidant chemistry
    corecore