55 research outputs found

    Low-power fixed-point compressed sensing decoder with support oracle

    Get PDF
    Approaches for reconstructing signals encoded with Compressed Sensing (CS) techniques, and based on Deep Neural Networks (DNNs) are receiving increasing interest in the literature. In a recent work, a new DNN-based method named Trained CS with Support Oracle (TCSSO) is introduced, relying the signal reconstruction on the two separate tasks of support identification and measurements decoding. The aim of this paper is to improve the TCSSO framework by considering actual implementations using a finite-precision hardware. Solutions with low memory footprint and low computation requirements by employing fixed-point notation and by reducing the number of bits employed are considered. Results using synthetic electrocardiogram (ECG) signals as a case study show that this approach, even when used in a constrained-resources scenario, still outperform current state-of-art CS approaches

    Deep Neural Oracles for Short-Window Optimized Compressed Sensing of Biosignals

    Get PDF
    The recovery of sparse signals given their linear mapping on lower-dimensional spaces can be partitioned into a support estimation phase and a coefficient estimation phase. We propose to estimate the support with an oracle based on a deep neural network trained jointly with the linear mapping at the encoder. The divination of the oracle is then used to estimate the coefficients by pseudo-inversion. This architecture allows the definition of an encoding-decoding scheme with state-of-the-art recovery capabilities when applied to biological signals such as ECG and EEG, thus allowing extremely low-complex encoders. As an additional feature, oracle-based recovery is able to self-assess, by indicating with remarkable accuracy chunks of signals that may have been reconstructed with a non-satisfactory quality. This self-assessment capability is unique in the CS literature and paves the way for further improvements depending on the requirements of the specific application. As an example, our scheme is able to satisfyingly compress by a factor of 2.67 an ECG or EEG signal with a complexity equivalent to only 24 signed sums per processed sample

    Plantar pain is not always fasciitis

    Get PDF
    The case is described of a patient with chronic plantar pain, diagnosed as fasciitis, which was not improved by conventional treatment. Magnetic resonance imaging revealed flexor hallucis longus tenosynovitis, which improved after local glucocorticoid injection

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given
    corecore