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Deep Neural Oracles for Short-window Optimized
Compressed Sensing of Biosignals

Mauro Mangia, Member, IEEE, Luciano Prono, Student Member, IEEE, Alex Marchioni, Student Member, IEEE,
Fabio Pareschi, Senior Member, IEEE, Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—The recovery of sparse signals given their linear
mapping on lower-dimensional spaces can be partitioned into a
support estimation phase and a coefficient estimation phase. We
propose to estimate the support with an oracle based on a deep
neural network trained jointly with the linear mapping at the
encoder. The divination of the oracle is then used to estimate
the coefficients by pseudo-inversion. This architecture allows the
definition of an encoding-decoding scheme with state-of-the-art
recovery capabilities when applied to biological signals such as
ECG and EEG, thus allowing extremely low-complex encoders.
As an additional feature, oracle-based recovery is able to self-
assess, by indicating with remarkable accuracy chunks of signals
that may have been reconstructed with a non-satisfactory quality.
This self-assessment capability is unique in the CS literature
and paves the way for further improvements depending on the
requirements of the specific application. As an example, our
scheme is able to satisfyingly compress by a factor of 2.67 an
ECG or EEG signal with a complexity equivalent to only 24
signed sums per processed sample.

Index Terms—Compressed sensing, Biosignal compression,
Low-complexity compression, Deep neural networks

I. INTRODUCTION

COMPRESSED Sensing (CS) is a relatively new paradigm
for the acquisition/sampling of signals that violates the

intuition behind the theorem of Shannon [1]–[3]. In fact,
CS theory states that, under surprisingly broad conditions,
it is possible to reconstruct certain signals or images us-
ing far fewer samples or measurements than they are used
with traditional methods. To enable this, CS is based on
two concepts: sparsity, which is related to the signals of
interest, and incoherence, which relates to the methods of
measurement/acquisition/sampling. Sparsity expresses the idea
many natural signals have a very parsimonious representation
when expressed in an appropriate sparsity basis. Incoherence
expresses the idea that a reduced number of acquisitions of a
waveform that have a sparse representation in an appropriate
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basis, which is made in a domain that is incoherent with it,
allows always to capture the entire signal information.

Based on these concepts, it is has been possible to devise
protocols for sampling/measurement [4], [5] which capture the
information content but require a number of measurements
comparable to the number of non-zero coefficients in the ex-
pression of the signal of interest with respect to its appropriate
sparsity base. Consequently, the most significant feature of
these sampling procedures is that they allow a sensor to capture
the information content of a signal without going through the
acquisition of its entire profile, thus performing acquisition
and compression at the same time. In other words, CS is a
very simple and efficient procedure to sample sparse signals
at a reduced rate, using much fewer resources compared to
standard sampling required for A/D conversion.

Of particular interest is that many signals of interest in
biomedical applications enjoy the sparsity property and can,
therefore, be efficiently acquired using CS, i.e., by using less
energy, in less time and/or with fewer samples. For example,
this has been demonstrated for Electrocardiographic (ECG),
Electromyographic (EMG) [6] and Electroencephalography
(EEG) [7] signals, which paved the way to the adoption of CS
for efficient acquisition of biosignals in Body Area Networks
nodes [8], [9]. This has been shown as well for waveforms
acquired through magnetic resonance imaging (MRI) [10],
where by using CS one can obtain the very important results
to accelerate the overall MRI acquisition [11].

All these advantages in the acquisition phase are balanced
by the increase in complexity necessary for the signal recon-
struction compared to the simple low-pass filtering needed
in a standard D/A conversion. In fact, reconstruction in a
CS frameworks boils down to solving the problem (which is
also fundamental in a number of heterogeneous applications)
of recovering an n-dimensional sparse signal x from a set
of m measurements y that represent the output of the CS
under-sampling encoding, i.e., with m ă n. More specifically,
one needs to find the sparsest n-dimensional vector x among
the infinite solution of the hill-defined system y “ Lpxq,
where L : Rn ÞÑ Rm is a linear dimensionality-reduction
operator, which, regrettably, is an NP-hard problem. However,
thanks to [12], the solution can be obtained by solving a
minimization problem, called Basis Pursuit (BP)1, using linear
programming. In other words, the result in [12] is fundamental
since it allows to obtain a solution for the BP problem

1The problem is called Basis Pursuit with DeNoising (BPDN) if noise is
also considered
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in polynomial time, thus making the use of CS practical.
Yet, the computational resources needed by the numerical
algorithm solving BP may be so demanding to make its
solution practically unfeasible in low-complexity nodes, like
a typical BAN gateway. To cope with this, several dedicated
BP/BPDN solvers have been proposed, such as the Spectral
Projected Gradient for L1 Minimization (SPGL1) [13], and
the Generalized Approximate Message Passing (GAMP) [14].
Alternative solutions rely on the observation that the main
issue in the computation of x is not finding a generic solution
to y “ Lpxq, but to find the sparse one. Starting from
this, further computational cost reduction can be achieved by
generating solutions which iteratively adjusts their sparsity at
each step. Different heuristics may be used to promote sparsity
and give raise to different methods, such as the Orthogonal
Matching Pursuit (OMP) [15] and the Compressive Sampling
Matching Pursuit (CoSaMP) [16].

Further to those methods, schemes have been proposed in
which the recovery algorithm is adapted to the class of signals
to acquire (see, e.g., [17]–[19] where the decoder stages are
tuned on the reconstruction of ECGs). These schemes exploit
statistical priors on the signal to favor reconstructions close to
what is typical in the class of acquired signals.

More recently it has been demonstrated that additional
advantages in terms of a smaller computational complexity
or improvement in the quality of the reconstructed signal can
be obtained by adopting a (Deep) Neural Network (DNN) for
reconstruction [20]–[27]. More specifically, in [24], authors
have shown a probabilistic relation between CS and a stacked
denoising autoencoder (SDA) implemented as 3-layer neural
network. Once adequately trained, the SDA can directly re-
cover a sparse image from its linear (or mildly non-linear)
measurements and has offered, in some cases, advantages
in terms of quality of the reconstructed images compared
to the most common greedy reconstruction algorithms. A
similar approach that employs fully-connected DNNs can be
found in [25], where CS has been applied to videos, and
the proposed approach enables fast recovery of video frames
at a significantly improved reconstruction quality. In [26],
authors have proposed a DNN called ISTA-Net and inspired by
the Iterative Shrinkage-Thresholding Algorithm (ISTA) [28],
which has been designed to optimize the solution of BP to
reconstruct compressed images. Another deep learning model
(BW-NQ-DNN) applied to CS acquisition/reconstruction of
neural recording has been presented in [27]. Here, three
networks have been jointly optimized to perform a binary
measurement matrix multiplication, a non-uniform quantiza-
tion, and reconstruction, respectively. Despite the advantage
shown in terms of quality of reconstruction, this approach
has a few drawbacks: i) it requires a pre-processing stage
detecting signal peaks, which adds complexity to the encoder
and specializes it to spiky signals; ii) it quantizes CS measure-
ments after a programmable non-linearity, which adds further
complexity.

This work proposes an innovative use of DNNs in a CS-
based acquisition/reconstruction framework. Unlike all the
cases mentioned above that use DNNs to reconstruct the
input signal directly, our model only provides a divination

1

RA

LAx

ENCODER

estim. s

estim. ξ|s
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Fig. 1. General scheme of an encoder-decoder pair based on CS. In the
decoder, we distinguish the estimation of the signal support s, and the
estimation of the non-zero coefficients ξ|s. Classical decoders perform both
estimations simultaneously. Our approach first estimates s and then ξ|s.

of the support of the input signal, i.e., the positions of
the non-null components of the signal expressed along the
sparsity basis. Our approach not only improves reconstruction
quality compared to standard techniques but also introduces
a self-assessment capability that allows estimating on the fly
the quality of reconstruction. Furthermore, with our method,
signals can be successfully reconstructed even when they
refer to very short acquisition windows, a crucial feature
that a further reduction of the complexity and a mixed-signal
implementation of the acquisition stage.

To the best of our knowledge, this is the first work proposing
to use a DNN for support identification, and one of the few
proposing to use a DNN to improve the reconstruction of
signals sampled using CS, which are not images.

The rest of the paper is organized as follows. Section II
introduces some basic concepts of the CS. In Section III,
the choice of n is analyzed with pros and cons for the two
considered classes of signals, ECGs and EEGs. Section IV
recaps standard and oracle-based CS decoders and introduces
the proposed DNN-based oracle. The latter is the main build-
ing block of the proposed CS decoder, described in Section V
along with performance analysis and comparisons with other
CS frameworks. The self-assessment capability is the topic of
Section VI, while Section VII reports computational analysis
for both encoder and decoder. Finally, we draw the conclusion.

II. COMPRESSED SENSING BASICS

Let us refer to the scheme in Fig. 1 and assume to
work by chopping input waveforms into subsequent win-
dows, each of which is represented by a set of its samples
x “ px0, . . . , xn´1q collected at Nyquist rate that we see
as a vector x P Rn. CS hinges on the assumption that
x is κ-sparse, i.e., in the simplest possible setting, that an
orthonormal matrix S exists (whose columns are the vectors
of the sparsity basis) such that when we express x “ Sξ, then
the vector ξ “ pξ0, . . . , ξn´1q does not contain more than
κ ă n non-zero entries.

The fact that x depends only on a number of scalars that
are less than its sheer dimensionality hints at the possibility
of compressing it. CS does this by applying a linear operator
LA : Rn ÞÑ Rm depending on the acquisition (or encoding)
matrix A P Rmˆn with m ă n and defined in such a way that
x P Rn can be retrieved from y “ LApxq P Rm. The ratio
n{m is the compression ratio and will be indicated by CR.

It can be intuitively accepted that the larger the κ, the larger
the m is needed to guarantee that x can be retrieved from y,
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and thus the lower the achievable CR. This relationship is
asymptotically identified by CS theory as m “ O pκ log pn{kqq
[2]. In finite and practical cases, one may often aim at using
a m value proportional to κ. Nevertheless, the worst-case
theoretical guarantees fail for m ă 2κ. In fact, despite the
infinite number of counterimages of y “ LA pξq, the first
prerequisite for the recoverability is that when we add the
κ-sparsity prior only one of them survives. Hence, given any
two κ-sparse vectors ξ1 an ξ2 it cannot be y “ LA pξ1q and
y “ LA pξ2q, i.e., LA pξ1 ´ ξ2q must be non-zero. Hence,
ξ1 ´ ξ2 cannot be in the kernel of LA. Since, in the worst-
case, ξ1 ´ ξ2 is 2κ-sparse, the only way of guaranteeing this
is that LA when restricted to any 2κ-dimensional coordinate
subspace of Rn is a maximum rank operator. Clearly, if
LA : Rn ÞÑ Rm with m ă 2κ, this is not possible and,
whenever the worst-case scenario is hit, the sparsity prior is no
longer able to guarantee signal recovery. In practice, though
worst-case scenarios seldom appear, classical reconstruction
algorithms fail before the limit m “ 2κ is reached.

Clearly, compression by LA must be coupled with a signal
reconstruction stage2 RA : Rm ÞÑ Rn such that ideally
x “ RA pLA pxqq. In practice the chain of the encoding and
decoding step is a lossy process and x̂ “ RA pLA pxqq is only
an approximation of x.

III. SIGNAL ENCODING AND PROS/CONS OF SHORT
WINDOWS

The class of linear operators LA that can be effectively
paired with a decoder RA is extremely large. Most notably,
if A is an instance of a matrix whose entries are independent
zero-average and unit-variance Gaussian random variables,
then LApxq “ Ax is known to work [1], [2], [29] with
very high probability. Yet, if the matrix A˘ is defined as
A˘j,k “ signpAj,kq, then LApxq “ A˘x is also known to
work with very high probability [30]. In the following, we
will focus on LApxq “ A˘x as this makes the computation of
LApxq multiplierless and is thus the best option for very low
resources implementations of the encoder stage.

Actually, the Literature shows that there is plenty of room
for optimizing A [31]–[34], and suitably designed matrices are
able to increase compression considerably compared to naive
random instances. Clearly, this paves the way to applications
in all those settings in which the computational complexity
of compression must be kept at bay, e.g., in BANs for which
reduced computation and compression before transmission are
essential to fit within a tight resource budget.

It is worth stressing that, to best express its potential in
reducing computational complexity at the encoder, CS should
consider the shortest possible acquisition windows. To under-
stand why, consider the processing of N given samples. They
may be partitioned into N{n contiguous and non-overlapping
time windows, each with n samples. Operator LA can be
applied to each window, entailing a number of operations
O pn ¨mq. The total number of operations to process the N
samples is O pn ¨m ¨ N{nq “ Opn ¨ N{CRq. However, CR

2Terms like decoding or recovery are also used to described this stage.

is fixed to a sufficient level to reconstruct the original n-
dimensional signal x from the m measurement y with a quality
that is deemed acceptable. Hence, at given CR and N , the
computational complexity is linearly increasing with n, i.e.,
with the length of individual time windows.

Another aspect that has to be considered is the signal
reconstruction latency. Even considering that RA pyq is an
instantaneous operation, the reconstructed signal is recovered
with a delay of up to n time steps, since y is available with a
delay of up to n time steps. Of course, the smaller the n, the
lower the reconstruction latency.

Beyond these high-level reasons, short windows may benefit
the implementation of the encoder also at a more physical
level. In purely digital realizations [35]–[37], the samples
come from a conventional Analog-to-Digital converter and
the encoder is implemented as a sequence of sums and
subtractions depending on the entries of A˘. In this case, not
only the computation time but also the memory needed to
store A reduces when n (and m) gets smaller. In mixed-mode
realizations (i.e., in the design of Analog-to-Information con-
verter based on CS) [8], [9], [38]–[40], y “ A˘x is computed
component-wise as yj “

řn´1
k“0 A

˘
j,kxk, i.e., accumulating the

signal samples in the analog domain. This operation implies an
analog storage to hold the intermediate sum value. However,
independently of the actual implementation and technology,
the approach is doomed to suffer from leakage and disturbance
[9], [41]. These phenomena degrade the stored value along
time, and their effect increases with the hold time and the
number of sums. Hence, the lower the n, the shorter the
time and the smaller number of operations needed to compute
yj , and therefore the smaller the degradation incurred before
conversion into digital words occurs.

Regrettably, gaining all the advantages connected with the
reduction of n is not straightforward. In fact, real-world signals
are such that, when n shrinks, the ratio κ{n is expected to
increase. Since κ affects m, any reduction of n tends to impair
the compression ratio. As a remark, the trend with which κ{n

increases when n decreases is a feature of the class of signals
considered.

To get a quantitative feeling of these trends, we show in
Fig. 2 the normalized sparsity κ{n for different values of n
observed in the classes of ECG and EEG signals. Instances
are obtained according to the synthetic generators described
in the Appendix. Moreover, for both classes of bio-signals,
the considered sparsity basis S is a family of the orthogonal
Wavelet functions [42]. In more detail, we select the Symmlet-
6 family as sparsity basis for ECG signals [9], while our choice
for the EEG case is the Daubechies-4 family [43].

The value of κ is seen as a system parameter estimated
at design-time so that the representations along the sparsity
basis of most of the signal instances, feature a number of non-
negligible elements not larger than κ. In Fig. 2, κ is estimated
as the least number of entries of the sparse representation that
includes 99.5% of the energy in the 99% of the ECG instances,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBCAS.2020.2982824

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 Submitted to IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS1

32 64 128 256 512

0.15

0.2

0.25

0.3

0.35

n

κ
/
n

ECG
EEG

Fig. 2. The effect of reducing n on the normalized sparsity κ{n in the two
examples of a synthetic ECG and a synthetic EEG signal.

and 95% of the energy in the 99% of the EEG instances3.
From the figure it is clear that the smaller the n, the larger the
(normalized) sparsity, and therefore the lower the attainable
CR that ensures a target reconstruction quality.

The above considerations reveal that there is a multi-faceted
trade-off linking computational/implementation complexity,
reconstruction quality, and compression.

IV. SIGNAL RECOVERY AND SUPPORT ORACLES

To better formalize sparsity and its consequences, recall
x “ Sξ and that not more than κ entries of ξ are non-
null. The positions of the non-zero entries of ξ identify the
so-called support supp ξ that we will represent by means of
the binary vector s P t0, 1un such that sj “ 1 if ξj ‰ 0
and sj “ 0 otherwise. Binary, n-dimensional vectors can be
used to index a generic n-dimensional vector v so that v|s
is the subvector of v collecting only the entries vj such that
sj “ 1. We will use binary n-dimensional vectors also to index
matrices M with n columns so that M|s is the submatrix of
M that contains only the columns whose index j is such that
sj “ 1. With this notation, κ-sparsity is equivalent to say
that x is efficiently represented by two pieces of information,
namely the n-dimensional binary vector s and the real vector
ξ|s whose dimensionality does not exceed κ.

Sparsity is fundamental in the decoding process going
from y back to x. In fact, since m ă n, the mapping
y “ A˘Sξ from ξ to y is non-injective. Hence, any given
measurement vector y corresponds to an infinite number of
possible ξ. However, if A is properly designed, only one of the
counterimages of y is κ-sparse and can be found by relatively
simple algorithmic means.

As shown in Fig. 1, a decoder recovers both s and ξs.
Among the many methods proposed in the literature, the
most classical approach is BPDN which recovers both pieces

3For the class of EEG signals we refer to a synthetic signal that emulates
event-related brain potentials, where readings in each lead contain information
on the external stimulus as well as a part on other neurons activity. This is why
we assume that 95% of the total energy is enough to identify the meaningful
components of the signal.

of information simultaneously by solving the optimization
problem

ξ̂ “ arg min
ξPRn

}ξ}1 s.t.
›

›y ´A˘Sξ
›

›

2
ď τ (1)

where x̂ “ Sξ̂ is the reconstructed signal, }v}p indicates the
p-norm of the generic vector v, and τ ě 0 accounts for the
possible presence of disturbances in the computation of y by
relaxing the constraint y “ A˘Sξ that would hold in the
noiseless case. The noiseless case itself corresponding to solve
the simpler BP problem can, of course, be tackled by setting
τ “ 0.

Though implicitly performed, support identification is an
essential ingredient in BP and BPDN and is embedded in the
1-norm used in the objective function. The reason behind the
use of the 1-norm minimization is to replace the minimization
of the cardinality of the support of ξ that would yield a
combinatorial problem. In fact, 1-norm minimization tends to
select the ξ with the least number of non-zero entries among all
the possible ξ satisfying the constraint [1]. This property is so
critical that changing the 1-norm in the merit function would
completely spoil reconstruction while changing the 2-norm in
the constraint usually still gives sensible results. Note that,
despite its fundamental merit, the 1-norm minimization is only
a proxy of support identification, which works under suitable
assumptions that are not necessarily satisfied in practice,
especially for large κ{n values [1].

Since we enlarge the application of the CS framework to the
cases where κ{n is quite large, we here consider a different
approach in which support identification is performed by an
oracle looking at the vector y and divining s. Once s is known
one may note that y “ A˘Sξ is a equivalent to y “ A˘S|sξ|s
to estimate ξ|s.

A. Oracle structure and training

The oracle we propose is based on a DNN trained on signals
with the same statistical features of the one to be acquired.
The DNN NC : Rm ÞÑ r0, 1sn is defined by the connection
parameters in C, with m inputs that correspond to the m
entries of the measurement vector y and n outputs.

The neural network has 3 intermediate fully connected
layers of cardinality 2n, 2n, and n, all with a ReLu activation
function. The output layer is also fully connected with n
units and sigmoidal activation function that map any scalar
a into p1` e´aq´1. Training also adapts the matrix A, so that
encoder and decoder are jointly optimized to improve support
identification and thus to improve reconstruction performance.

Both the connection parameters C and the matrix A are
initialized as instances of independent zero-average unit-
variance Gaussian random variable and adjusted by training
the compound system NC ˝ LA : Rn ÞÑ r0, 1sn. The training
set is made of a sequence of κ-sparse signals xptq “ Sξptq

(for t “ 0, . . . , T ´ 1) and of corresponding binary vectors
sptq. The true support of ξptq encoded in sptq and the output
optq “ NC

`

LA
`

xptq
˘˘

of the DNN are compared by means
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of a loss function, which is a total component-wise clipped
cross-entropy between s and o defined by

Xptq “ ´
ÿ

j|s
ptq

j “1

Lε

´

o
ptq
j

¯

´
ÿ

j|s
ptq

j “0

Lε

´

1´ o
ptq
j

¯

(2)

where Lεp¨q “ mintlog2p1 ´ εq,maxtlog2pεq, log2p¨quu for a
small ε. Though LApxq “ A˘x in the forward pass, to prevent
the sign function from interrupting error backpropagation, in
the backward pass we assume ∇ALApxq “ ∇A pAxq. With
this, since A˘j,k “ signpAj,kq for every j and k, the training
acts on the continuous-valued parameters whose sign is used
in feedforward computation.

Using the methods specified in the Appendix, we generate a
dataset composed of 8ˆ105 signal instances for both the ECG
and the EEG case. Each dataset is split in 80% for training
(training set) and 20% for performance assessment (validation
set).

All models proposed in this paper are implemented and
trained using the TensorFlow framework [44] with the help
of the high-level API provided by Keras [45]. Training is per-
formed with stochastic gradient descent, where each gradient
step is computed with a mini-batch comprising of 30 signal
instances and an initial learning rate value of 0.1.

To appreciate the complexity of the networks we propose,
the one for n “ 64 and with m ranging in r16, 40s contains
from 32128 to 36736 parameters and in our examples is trained
for 500 epochs4. For n “ 128 and with m ranging in r24, 64s,
the model counts from 124672 to 140032 parameters and in
our examples is trained for 1000 epochs. Even assuming that
each parameter is encoded in 4B, the total memory footprint
is limited below 150KiB for n “ 64 and below 550KiB for
n “ 128. Such requirements may easily fit within the memory
budget of commercially available devices used for small scale
computation and gateway tasks.

B. Performance indexes
The encoder-decoder chain may simultaneously perform

more than one useful operation on the signal (see, e.g., [46]–
[49] for its use as an encryption stage) of which compression

4In each epoch the training algorithm walks through the entire training set.

is surely the most obvious as m ă n. The compression
performance of the encoder-decoder chain is easily assessed
by the compression ratio n{m.

However, such compression is in general lossy, and some
degradation appears yielding x̂ ‰ x. The closer x̂ to x, the
better the encoder-decoder chain and this can be assessed using
the Reconstruction Signal-to-Noise Ratio (RSNR) defined as

RSNR “
}x}2

}x´ x̂}2
dB (3)

where for any scalar a, the adB notation is equivalent to
20 log10paq.

RSNR can be used to define two ensemble-level perfor-
mance figures, computed starting from a set xptq (for t “
0, . . . , T ´ 1) of signal instances recovered as x̂ptq. The first
is the Average RSNR (ARSNR)

ARSNR “
1

T

T´1
ÿ

t“0

RSNRptq (4)

while the second is the Probability of Correct Reconstruction
(PCR) that, given a RSNRmin value, is defined as

PCR “
1

T
#
!

t
ˇ

ˇ

ˇ
RSNRptq ě RSNRmin

)

(5)

where # counts the number of elements in the set. The value
of RSNRmin has to be set accordingly to the minimum RSNR
level that is considered sufficient for a correct reconstruction.

V. TRAINED CS WITH SUPPORT ORACLE

The trained oracle can be exploited in the definition of the
decoder reported in Fig. 3. We compute o “ NCpyq and, given
a certain threshold omin P r0, 1s, we estimate s with the binary
vector ŝ P t0, 1un such that ŝj “ 1 if oj ě omin and ŝj “ 0
otherwise. Starting from ŝ we finally estimate

ξ̂|ŝ “
`

A˘S|ŝ
˘:
y (6)

where ¨: indicates Moore-Penrose pseudo-inversion that is
needed since the number of ones in ŝ is in the order of κ ă m
and the matrix A˘S|ŝ is a tall matrix with more rows than
columns. The two estimations ŝ and ξ̂|ŝ define the recovered
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signal x̂. Decoder operations depend on the value of omin that
is set by a further training phase in which each vector in the
training set is encoded and decoded for different values of
omin. The omin yielding the highest ARSNR is selected. We
name our approach Trained CS with Support Oracle (TCSSO)
to summarize its main features.

We compare the performance of TCSSO with that of some
well-known methods. Since TCSSO simultaneously adapts
encoder and decoder, we pair some classical signal recovery
algorithms with an established technique for the optimization
of the matrix A˘ that is able to cope with the antipodality
constraint on the entries.

The sensing matrix design follows the rakeness-based CS
framework [33], [34] that we have verified to yield better
results compared to the classical independent assignment of
˘1 to each of the entries of A˘. Performance improvement
comes from the adaptation of the statistics of the rows of the
sensing matrix to the statistics of the acquired class of signals.
As decoders, we consider BP and BPDN as presented in (1)
along with Orthogonal Matching Pursuit (OMP) [15] and Gen-
eralized Approximate Message Passing (GAMP) [14]. OMP
is a lightweight greedy approach that iteratively estimates the
signal support while GAMP is often better than BP and BPDN
as it exploits Gaussian approximation of BP that usually holds
for large n values. When dealing with ECGs, we also test the
performance of the Weighted `1 minimization (WL1) [18] as
a representative of decoders that exploit statistical priors on
the signal support. In all the tested cases, BP outperforms
BPDN such that, in the rest of the paper, we consider BP as
a reference for standard CS decoder.

We evaluate ARSNR and PCR by Montecarlo simulations
using the samples of the validation set for both ECG and
EEG cases with a superimposed noise resulting in an Intrinsic
Signal-to-Noise Ratio (ISNR) equal to 60 dB. The achieved
performances are reported in Fig. 4 for the n “ 64 and κ “ 16
case. In all plots, the number of measurements sweeps from
m “ 40 down to m “ 16 thus focusing on compression ratios
from CR “ 1.6 up to CR “ 4. TCSSO outperforms all other
techniques and allows us to work at compression ratios much
larger than those commonly achievable, while still requiring
a limited computational effort since n “ 64. For example,
to guarantee ARSNR “ 50 dB, results in Fig. 4(a),(c) show
that by using TCSSO one may get CR « 3.5 for ECGs
and « 2.9 for EEGs. In the same setting, RAK`WL1 is the
best performing competitor for ECGs with CR « 2.2 while
RAK`BP is to be considered a benchmark for the EEGs with
CR « 1.8.

Fig. 5 shows how the situation changes when n increases
from 64 to 128. Performance is reported only in terms of
ARSNR and for TCSSO along with its best competitor. The
increase of n positively impacts performances in general since
κ{n decreases. Nevertheless, TCSSO still outperforms the best
of the traditional CS frameworks. Considering ARSNR “

50 dB as the desired quality of service, TCSSO works with
CR « 4.4 and CR « 2.9 while the competitors give at
most CR « 2.7 and CR « 2.2 in case of ECGs and EEGs
respectively.

A. Preliminary evidence on real signals

The ideal path for applying our method in real-world cases
is to collect enough acquisitions to substantiate both a training
and a validation set. The acquisitions to which we have access
do not currently allow such a thorough assessment. However,
some evidence can be given by using synthetic data for
the learning phase, and real-world signals for a preliminary
assessment. Such an approach is suboptimal since there is
no guaranteed coherence between the training set used for
learning and the validation set used for assessment. The results
are still encouraging.

In particular, we may consider the waveforms contained
in the MIT database for testing compression of ECG signals
[50], [51] and the pool of acquisitions used in [43] for EEG.
A sample comparison between original and reconstructed
waveforms for n “ 64 and m “ 32 (which is equal to 2κ)
is reported in Fig. 6. Despite the appearance of some artifacts
introduced by the decoder, the plots show that, even with the
suboptimal setting, our method is able to yield acceptable
reconstructions with extremely small n and with m below the
classical threshold 2κ.

VI. DECODER SELF-ASSESSMENT

The TCSSO architecture described in the previous section
can be extended by exploiting a property that stems from the
fact that s is estimated separately from ξ|s.

In fact, assume that no noise is present and that the size
and content of A˘ are such that y “ A˘Sξ is satisfied by
one and only one κ-sparse ξ, i.e., that recovery of the true
signal is theoretically possible. If the oracle is successful in
divining the support, then ŝ “ s and y “ A˘S|sξ|s implies that
y P span

`

A˘S|ŝ
˘

, where, for any matrix M , span pMq is the
subspace generated by the linear combination of its columns.
This has a twofold consequence: i) (6) computes ξ̂|ŝ “ ξ|s, ii)
if ξ̂ is mapped back we have A˘Sξ̂ “ y.

However, if the oracle fails, then ŝ ‰ s and since ξ
is the unique κ-sparse solution of y “ A˘Sξ then y R

span
`

A˘S|ŝ
˘

. This has a twofold consequence: i) (6) com-
putes ξ̂|ŝ ‰ ξ|s, ii) if ξ̂ is mapped back we have A˘Sξ̂ ‰ y.

Clearly, the decoder cannot check the correctness of ξ̂ as
the true ξ is unknown. Nevertheless, it may map ξ̂ back to
measurement obtaining ŷ “ A˘S|ŝ

`

A˘S|ŝ
˘:
y “ A˘x̂ that

could be different from y. As a result, }y ´ ŷ}2 is most
naturally linked to the decoder failure and grants a useful
self-assessment capability. In particular, one may monitor the
quantity

RMNR “
}y}2

}y ´ ŷ}2
(7)

that is the Reconstruction Measurements-to-Noise Ratio, and
declare that the oracle, and thus the TCSSO decoder, has
succeeded when RMNR ě RMNRmin for a certain threshold.

This situation can be exemplified in the small-dimensional
case n “ 4, κ “ 2 and m “ 3 with

A˘ “

¨

˝

`1 `1 `1 `1
`1 `1 ´1 ´1
`1 ´1 `1 ´1

˛

‚
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Fig. 4. Reconstruction performance for ECG (a)-(b) and EEG signals (c)-(d) in terms of both ARSNR (a)-(c) and PCR (b)-(d) with RSNRmin “ 55 dB.
The support oracle decoder with trained sensing matrices, TCSSO, is compared against OMP, BP, and GAMP with adapted sensing matrices (rakeness-based
CS, RAK). For the ECG, we also consider the adapted decoder WL1 in [18].

Since κ “ 2, the instances of the original signal ξ P R4 may
have at most two non-null components and thus lay on the
union of all the possible coordinate planes in R4. We may
indicate one of those planes as cj,k where j and k are the
indexes of the non-null coordinates of its points. The matrix
A˘ is such that A˘ maps each of those 6 coordinate planes
into a plane in R3 that can be distinguished from the others.
This is exemplified in Fig. 7 on the left of which we draw the
6 planes ιj,k Ă R3 that are the images through A˘S of the
coordinate planes cj,k Ă R4. Note that, due to dimensional-
ity reduction, images are not pairwise orthogonal. However,
recovery is theoretically possible as no two images ιj,k and
ιj1,k1 are the same. Therefore a sufficiently clever algorithm
can establish the support by looking at the measurement vector
y.

Assume now that s “ p1, 1, 0, 0q, i.e., that the true signal
ξ P c0,1 is mapped by A˘S into a measurement vector y P ι0,1.
Assume also that the oracle mistakes the support and estimates
ŝ “ p0, 0, 1, 1q, implying ξ̂ P c2,3. By computing (6), the
vector y is mapped back to ξ̂ on that plane, which is therefore
different from ξ. Though, only approximately, the same holds
in the noisy case and give an idea why the difference between
y and ŷ assesses the correctness of the divined ŝ, i.e., the
quality of the reconstruction x̂.

As an example of the underlying mechanism, Fig. 8 re-
ports some Montecarlo evidence on the relationship between

RMNR and RSNR for the ECG signals and in three different
configurations. In Fig. 8a no noise is present and m “ 32 “
2κ; in Fig. 8b ISNR “ 60 dB and m “ 32 “ 2κ, whereas in
Fig. 8c no noise is present, but m “ 24 ă 2κ.

The two-dimensional plots show an estimation of the joint-
probability, conditioned to the positive events, i.e., the support
has been correctly identified (ŝj ě sj for all j “ 0, . . . , n ´
1, orange points) or to the negative events, i.e., at least one
entry in the support is neglected (ŝj ă sj for at least one
j “ 0, . . . , n´ 1, blue points). Darker colors stand for higher
densities.

The one-dimensional plots at the bottom of the figure report
the error probabilities of a self-assessment procedure that calls
for a positive event whenever RMNR ě RMNRmin and
for a negative event otherwise. As the threshold RMNRmin

increases, the probability of a false positive decreases since
only very high RMNR reconstructions are declared correct.
On the contrary, the probability of a false negative increases
since for larger RMNRmin even good reconstructions can be
declared incorrect.

The ideal conditions in Fig. 8a result in perfect self-
assessment capabilities. When noise is added as in Fig. 8b,
positive and negative cases get mixed but remain identifiable
by looking at RMNR.

Though no noise is present in Fig. 8c, the fact that m ă 2κ
makes the number of measurements insufficient for signal
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Fig. 5. Performance in terms of ARSNR ECG (a) and EEG signals (b) as
a function of the compression ratio for both TCSSO and the best observed
traditional approach (RAK + WL1 for ECG while the EEG case refers to
RAK + BP). Results are for n “ 64 as well as for n “ 128.

reconstruction, as there is no guarantee that only one κ-sparse
signal ξ corresponds to the given y through A˘S. Hence, more
than one support corresponding to the measurement exists.
In these conditions, it may happen that the oracle divines a
support that includes the true one (more than κ outputs of
the network are larger than omin) as well as components of
other possible supports. In this case, the oracle is not missing
the support (orange point in the lower-right cluster in the
scatter plot of Fig. 8c). However, pseudo-inversion spreads the
reconstruction over all the available components, thus failing
to reconstruct the signal. It may also happen that the oracle
divines a support different from the true one. In this case, the
oracle is wrong (blue points in the lower-right cluster in the
scatter plot of Fig. 8c), and pseudo inversion identifies a sparse
signal that is not the true one. Both cases give rise to points
for which RMNR is very high, but the RSNR is very low,
and no matter how high the RMNRmin, the probability of a
false positive is not vanishing.

Luckily enough, the above cases are the ones breaking
worst-case guarantees and happen quite rarely: in our 1.6ˆ105

validation set, for n “ 32, κ “ 16 and m “ 24, the
oracle divines a support in excess of the true one only 109
times, and a support different from the true one only 6 times.
The statistics commonly used to assess performance remain
substantially unaltered by these failures that are undetectable
by looking at the RMNR.
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Fig. 6. Comparisons between real-world signals and their corresponding
waveforms reconstructed by TCSSO for ECGs (a) and EEGs (b). The top
plot (a) refers to records 11950 03 and 12531 03 taken from the online
repository MIT-BIH ECG compression test database [50]. The bottom plot (b)
contains EEG signal chunks of the ”Fz” electrode from the pool of acquisition
described in [43]. For both cases we adopt n “ 64 and m “ 32.
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Fig. 7. The mechanism granting self-assessment capabilities to decoders based
on a support oracle
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Fig. 8. The relationship between RSNR and RMNR for ECG signals. In all cases n “ 64 and κ “ 16. Orange dots correspond to cases in which ŝ includes
all the components of s, while blue dots correspond to ŝ failing to identify some components in s. Above and to the right of the scatter plots are logarithmic
histograms estimating the probability density of RMNR and RSNR. In (a) m “ 32 “ 2κ and ISNR “ 8. In (b) m “ 32 “ 2κ and ISNR “ 60 dB. In
(c), m “ 24 ă 2κ and ISNR “ 8.

In general, the value of RMNRmin can be decided once that
omin is set, by a further pass over the training set. This allows
us to estimate false positive and false negative curves as in
Fig. 8, and use them as criteria. In the following, we will set
RMNRmin as the largest value for which false negative proba-
bility is negligible. Whenever a failure is detected, the decoder
may take different actions whose effectiveness depends on the
final applications.

The exploration of all the possibilities of the resulting two-
level decoder is out of the scope of this paper. However, it
can be easily recognized that quite a few options are available,
such that:

i) raising a warning and mark the current window as
potentially incorrect;

ii) feeding the warning back to the encoder and require
further information to correct the reconstruction (thus
lowering the CR for this instance);

iii) triggering another decoder on the same measurement
vector hoping that this will improve reconstruction;

iv) any combination of the above.

As a partial and non-optimized example whose only aim
is to show that some information can still be extracted from
the measurements when first-attempt TCSSO decoder fails, we
trigger GAMP5 as a second-wind decoder.

Fig. 9 plots the probability that GAMP yields a RSNR
larger than what is given by TCSSO when applied to the
instances that the latter marks as incorrectly recovered as
RMNR ă RMNRmin, as a function of CR for the n “ 64,

5GAMP has achieved better results compared to the other classical re-
construction algorithms in this setting, i.e., when the sensing matrix is not
designed according to the rakeness-based CS.

1

2 2.5 3 3.5 4

0

0.25

0.5

0.75

1

CR

P
ro
b
a
b
il
it
y

ECG

EEG

Fig. 9. Probability for GAMP decoder to reconstruct both ECG and
EEG signals with RSNR higher than TCSSO in case of TCSSO failure.
Prob pRSNRGAMP ą RSNRTCSSO |RMNR ă RMNRminq.

κ “ 16 case. A second-wind decoding is useful when such a
probability is larger than 50%, i.e., approximately for CR ď 2.

VII. COMPUTATIONAL REQUIREMENTS

As noted previously, CS-based lossy compression methods
result in a multi-faceted trade-off between compression ratio,
reconstruction quality, and computational complexity. In this
section, we give further detail on the last aspect, distinguishing
what is required at the encoder (that we want to minimize)
and at the decoder (that we want to be not worse than the
needs of classical recovery methods). In all cases, we refer
to the computational burden per processed sample, i.e., we
divide the number of operations by the number of samples n
contained in the processed window.
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TABLE I
PERFORMANCE IMPROVEMENT IN TERMS OF ARSNR, COMPUTATIONAL

OVERHEAD IN TERMS OF AC{sample AND INCREASE IN MEMORY
FOOTPRINT FOR THE SENSING MATRIX (# ENTRIES OF A˘) WITH n GOING

FROM 64 TO 128. RESULTS ARE FOR TCSSO IN ECG AND EEG CASES
WITH COMPRESSION RATIO (CR) RANGING FROM 2 TO 4.

CR
ARSNR [dB]

AC{sample # A˘j,kECG EEG

n 64 128 64 128 64 128 64 128

4.00 35.2 `18.0 12.0 `11.5 16 ˆ2 1.0Ki ˆ4

3.20 52.4 `5.1 38.8 `6.7 20 ˆ2 1.3Ki ˆ4

2.67 56.8 `2.2 55.3 `0.4 24 ˆ2 1.5Ki ˆ4

2.29 58.0 `2.4 58.0 `0.2 28 ˆ2 1.8Ki ˆ4

2.00 59.2 `1.7 59.7 `0.1 32 ˆ2 2.0Ki ˆ4

A. Encoder

The complexity of the encoder is briefly introduced in
Section III as one of the leading design criteria. The number
of signed accumulations (AC) is nm “ n2CR´1 thus yielding
nCR´1 AC{sample. Further to time-complexity, the memory
footprint is dominated by the storage of the matrix A˘, and
requires a number of entries equal to nm “ n2CR´1. In
principle, matrix entries are bits. However, microcontroller-
based implementations may favor 1-byte-per-entry or even
4-bytes-per-entry solutions. In fact, in some architectures,
the alignment of entries at word boundaries ensures better
performance both in terms of speed and energy (see, e.g., [19]),
this is why we express the memory footprint as the number
of entries in A˘.

From the blue curves in Fig. 5, one gets that a higher n
results in better reconstruction performance for the same CR,
and thus there is a trade-off between encoder complexity and
window length.

Table I reports the comparison between the increase of
reconstruction quality, complexity, and memory footprint for
ECG signals when n goes from 64 to 128, with CR ranging
from 2 to 4. At high CR levels, an increase in terms of
ARSNR (e.g., with CR “ 4, +18.0 dB for ECG and +11.5 dB
for EEG) may be worth the ˆ2 in terms of computational
effort and the ˆ4 in terms of memory footprint. However, for
lower compression ratios, the increase in resource needs is not
justified by the limited increase in performance: for CR “ 2,
memory footprint and complexity increase as before but one
only gains +1.7 dB in the ECG case and +0.1 dB in the EEG
case.

B. Decoder

In CS-based schemes, decoding is computationally more
intensive than encoding. We may evaluate the complexity of
the TCSSO decoder by counting the number of Multiply-
and-Accumulate (MAC) operations needed to compute x̂,
disregarding the training phase, starting from the fact that the
number of MAC operations required in a fully connected layer
with n nodes, each with i inputs, is ni.

Neglecting the input layer, that has m nodes and that
requires no operations, the oracle NC is composed by 3 fully

connected hidden layers with 2n, 2n and n nodes, and a
final fully connected output layer with n nodes. The number
of inputs of these layers is therefore m, 2n, 2n and n,
respectively. The layer-by-layer number of MACs required for
the forward pass is 2nm, 4n2, 2n2 and n2, giving rise to a
total of p2m`7nqn “ p2{CR`7qn2 MACs for each window
thus yielding p2{CR` 7qn MAC{sample.

After support estimation, additional MACs are needed to
compute x̂. In particular, we focus on the computational cost
of ξ̂ “ B:y, with B: the Moore-Penrose pseudoinverse of
B “ A˘S|ŝ, i.e., of a matrix with m rows and a number c of
columns κ ď c ď n, with c » κ being the most frequent case.
The computational complexity of pseudo-inversion reflects its
analytical formula such that ξ̂ “ BJ

`

BBJ
˘´1

y must be
computed. Since B is a m ˆ c matrix, BBJ requires m2c
MACs, and the inversion entails 2m3 MACs. Now, the right-
multiplication

`

BBJ
˘´1

by y costs m2 MACs and the final
left-multiplication results in mc MACs. Considering all contri-
butions, we arrive at estimating a total of mp2m2`mκ`m`κq
for the typical c “ κ case. The complexity is then equal to
p2nCR´2

`nκ{nCR´1
` κ{n`CR´1

qnCR´1 MAC{sample.
We may compare the complexity of TCSSO decoding with

that of OMP, which is known to be one of the most light-
weighted approaches. We consider the standard implemen-
tation of OMP as described in [52]. A modified version
(bWOMP) of this algorithm has been proposed in [19] to
exploit the same statistical prior described in [18] and improve
reconstruction performance with no significant increase of
computational complexity. The detailed description of OMP is
out of the scope of this paper, and we refer to [52] for details.
Knowing that OMP is an iterative algorithm that estimates
the signal support in at least κ iteration, we limit ourselves
to provide the complexity in terms of the number of MAC
for the j-th iteration that is nm ` 2mpj ´ 1q ` 2m ` 2jm.
This yields a total of at least 2κm ` 2κ2m ` κnm MACs.
After that, OMP computes the pseudo-inverse of a matrix
of the same size as the B “ A˘S|ŝ in TCSSO. The total
complexity of the iterative part is therefore given by p2 `
2n κ{n ` nqnκ{nCR´1 MAC{sample and must be compared
with the computational effort required by the oracle that is
p2{CR` 7qn MAC{sample.

Though the contributions to the computational complex-
ities computed above have different asymptotic behaviors,
their magnitude in the small-n cases can be appreciated
only by numerical evaluation. As an example, for n “ 64,
κ “ 16 and CR “ 2 (one of our ECG cases) the first
part of OMP entails some 784MAC{sample, the oracle in
TCSSO requires some 512MAC{sample, while the common
pseudo-inversion amounts to 1304MAC{sample. As a further,
somehow opposite, example, for n “ 128, κ “ 26 and
CR “ 4 (one of our EEG cases) the first part of OMP en-
tails some 1183MAC{sample, the oracle in TCSSO requires
some 960MAC{sample, while the common pseudo-inversion
amounts to 735MAC{sample.

In both cases, the complexity of TCSSO and that of OMP
are analogous, showing that, though TCSSO allows imple-
menting extremely lightweight encoders, the decoder does not
have to compensate by increasing its computational require-
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ments compared to conventional decoders. As a consequence,
since bWOMP has complexity similar to OMP, at least in the
settings we analyzed, the complexity of TCCSO is comparable
to the one of decoders that use a statistical prior on the signal
support.

VIII. CONCLUSION

We propose a CS decoder that, starting from the compressed
measurements, first guesses which components are non-zero
in the sparse signal to recover, and then computes their
magnitudes. Support guessing is provided by a suitable DNN-
based oracle that reveals extremely accurate, especially when
trained together with the encoding matrix.

The resulting decoder largely outperforms classical ap-
proaches, even when they are paired with one of the most
effective adaptation policies for the encoding matrix, and
allows the application of CS to signal windows containing a
limited number of samples. The adoption of short windows is
extremely beneficial along many directions; one of the most
remarkable is the computational complexity of the encoder.
Yet, short windows are usually out of the reach of classical
CS mechanisms as the sparsity assumption on which they
hinge tends to fail when the dimensionality of the waveform
to compress decreases. Hence, our proposal allows the im-
plementation of extremely low complexity encoders that still
feature remarkable compression capabilities.

Furthermore, the separation between support guessing and
magnitude calculation allows our decoder to detect cases in
which the reconstruction may be affected by significant errors,
thus paving the way, for example, to additional processing that
further increases the reconstruction performance.

We demonstrated the effectiveness of this novel approach
addressing realistic ECG and EEG signals for which com-
pression ratios above 2 can be reached with a computational
burden not exceeding 32 signed sums per sample.

APPENDIX

GENERATION OF ECG AND EEG DATASETS

Due to the large number of signal instances needed, in
general, to train a neural network, both in the ECG and in the
EEG cases, we used a MATLAB code to generate synthetic
instances of the two classes of signals.

As mentioned in Section III, ECGs exhibit sparsity with
respect to the orthonormal set of vectors representing the
Symmlet-6 wavelet family transformation. Here, κ is set on
16 for n “ 64 and 24 for n “ 128. For the EEG signals
the sparse vectors ξ are with respect the basis representing
the Daubechies-4 wavelet transformation where k “ t16, 26u
matches n “ t64, 128u.

A. ECG

The synthetic generator6 of ECGs is thoroughly discussed in
[53]. Signals are generated as noiseless waveforms. The noisy
cases are obtained by superimposing additive white Gaussian

6The MATLAB code is freely available for downloaded from the Physionet
website at http://physionet.org/content/ecgsyn/

noise whose power is such that the intrinsic SNR (ISNR) is
60 dB.

The setup is the same detailed in [33]. The heart-beat
rate is randomly set using an uniform distribution between
60 beat{min and 100 beat{min. We generate chunks of 2 s
with a 256 sample{s sampling frequency, that are split into
windows of n subsequent samples. For both n “ 64 and
n “ 128 cases we generate 8 ˆ 105 input vectors x such
that the corresponding total number of signal chunks are 105

and 2ˆ 105. These input vectors are randomly split between
a training set and a test set where the latter contains the 20%
of the total amount of vectors x.

B. EEG

The detailed description of the code to generate the synthetic
EEG signal7 can be found in [54]. The generator emulates
event-related brain potentials, modeling an evoked potential
as the series of a positive and a negative peak occurring at a
fixed time relative to the event. The peaks are added to the
uncorrelated background noise, whose power is set to a level
such that the resulting signal is very similar to an EEG signal
measured by a real scalp electrode. Though the software can
generate all channels in a multi-electrode EEG according to
the standard 10-20 system, we focus on the “Fz” electrode,
since it is in proximity (but not exactly on the top) of the
simulated source of the stimulus. The sampling rate is set to
1024 sample{s with a stimulus frequency of 1Hz.

We generate tracks corresponding to 50 different patients by
starting from the parameters used in [54] and adding a random
uniformly distributed offset to each of them. The ranges of the
offsets for the positive peaks are ˘16 samples for the position
of the peak, ˘0.05Hz for the peak frequency, and ˘1 for the
peak amplitude. Ranges for the random offsets for negative
peaks are ˘26 samples for the position of the peak, ˘1Hz
for the peak frequency, and ˘4 for the peak amplitude.

The signal length for each patient is such that the total
number of n-sample windows is 8 ˆ 105. After that, 20%
of signal instances for each patient are randomly select to
contribute at the test set while the remaining 80% is for the
training phase.
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