2,442 research outputs found

    Sequentially Triggered Star Formation in OB Associations

    Get PDF
    We discuss observational evidence for sequential and triggered star formation in OB associations. We first review the star formation process in the Scorpius-Centaurus OB association, the nearest OB association to the Sun, where several recent extensive studies have allowed us to reconstruct the star formation history in a rather detailed way. We then compare the observational results with those obtained for other OB associations and with recent models of rapid cloud and star formation in the turbulent interstellar medium. We conclude that the formation of whole OB subgroups (each consisting of several thousand stars) requires large-scale triggering mechanisms such as shocks from expanding wind and supernova driven superbubbles surrounding older subgroups. Other triggering mechanisms, like radiatively driven implosion of globules, also operate, but seem to be secondary processes, forming only small stellar groups rather than whole OB subgroups with thousands of stars.Comment: Invited talk at the IAU Symposium 237: "Triggered Star Formation in a Turbulent ISM", Prague, Czech Republic, August 200

    X-ray view of IC348 in the light of an updated cluster census

    Full text link
    We study the properties of the coronae of the low-mass stars in the young (~2-3Myr), nearby (~310pc) open cluster IC348 combining X-ray and optical/infrared data. The four existing Chandra observations of IC348 are merged, thus providing a deeper and spatially more complete X-ray view than previous X-ray studies of the cluster. We have compiled a comprehensive catalog of IC348 members taking into account recent updates to the cluster census. Our data collection comprises fundamental stellar parameters, infrared excess indicating the presence of disks, Halpha emission as a tracer of chromospheric emission or accretion and mass accretion rates. We have detected 290 X-ray sources in four merged Chandra exposures, of which 187 are associated with known cluster members. Only four of the X-ray sources are brown dwarfs (spectral type M6 and later). The detection rate is highest for diskless Class III stars and increases with stellar mass. This may be explained with higher X-ray luminosities for higher mass and later evolutionary stage that is evident in the X-ray luminosity functions. In particular, we find that for the lowest examined masses (0.1-0.25 Msun) there is a difference between the X-ray luminosity functions of accreting and non-accreting stars (classified on the basis of their Halpha emission strength) as well as those of disk-bearing and diskless stars (classified on the basis of the slope of the spectral energy distribution). These differences disappear for higher masses. This is related to our finding that the L_x/L_bol ratio is non-constant across the mass/luminosity sequence of IC348 with a decrease towards lower luminosity stars. Our analysis of an analogous stellar sample in the Orion Nebula Cluster suggests that the decline of L_x/L_ bol for young stars at the low-mass end of the stellar sequence is likely universal.Comment: Accepted for publication in Astronomy & Astrophysic

    Age spreads in clusters and associations: the lithium test

    Full text link
    We report the evidence that several low-mass stars (<~0.4 Msun) of the Orion and Upper Scorpius clusters have lithium abundances well below the interstellar value. Due to time-dependent depletion, our result implies stellar ages greater than ~5 Myr, suggesting that star formation has been proceeding for a long time in these systems.Comment: to appear in IMF@50: The Initial Mass Function 50 years later, eds. E. Corbelli et al. (Kluwer Acad. Press), 2004, in pres

    The Clump Mass Function of the Dense Clouds in the Carina Nebula Complex

    Full text link
    We want to characterize the properties of the cold dust clumps in the Carina Nebula Complex (CNC), which shows a very high level of massive star feedback. We derive the Clump Mass Function (ClMF), explore the reliability of different clump extraction algorithms, and investigate the influence of the temperatures within the clouds on the resulting shape of the ClMF. We analyze a 1.25x1.25 deg^2 wide-field sub-mm map obtained with LABOCA (APEX), which provides the first spatially complete survey of the clouds in the CNC. We use the three clump-finding algorithms CLUMPFIND (CF), GAUSSCLUMPS (GC) and SExtractor (SE) to identify individual clumps and determine their total fluxes. In addition to assuming a common `typical' temperature for all clouds, we also employ an empirical relation between cloud column densities and temperature to determine an estimate of the individual clump temperatures, and use this to determine individual clump masses. While the ClMF based on the CF extraction is very well described by a power-law, the ClMFs based on GC and SE are better represented by a log-normal distribution. We also find that the use of individual clump temperatures leads to a shallower ClMF slope than the assumption of a common temperature (e.g. 20 K) of all clumps. The power-law of dN/dM \propto M^-1.95 we find for the CF sample is in good agreement with ClMF slopes found in previous studies of other regions. The dependence of the ClMF shape (power-law vs. log-normal distribution) on the employed extraction method suggests that observational determinations of the ClMF shape yields only very limited information about the true structure of the cloud. Interpretations of log-normal ClMF shape as a signature of turbulent pre-stellar clouds vs. power-law ClMFs as a signature of star-forming clouds may be taken with caution for a single extraction algorithm without additional information.Comment: 8 pages, 7 figures, accepted by A&

    Direct Imaging and Spectroscopy of a Planetary Mass Candidate Companion to a Young Solar Analog

    Full text link
    We present Gemini near-infrared adaptive optics imaging and spectroscopy of a planetary mass candidate companion to 1RXS J160929.1-210524, a roughly solar-mass member of the 5 Myr-old Upper Scorpius association. The object, separated by 2.22" or 330 AU at ~150 pc, has infrared colors and spectra suggesting a temperature of 1800(-100/+200) K, and spectral type of L4(-2/+1). The H- and K-band spectra provide clear evidence of low surface gravity, and thus youth. Based on the widely used DUSTY models, we infer a mass of 8(-2/+4)Mjupiter. If gravitationally bound, this would be the lowest mass companion imaged around a normal star thus far, and its existence at such a large separation would pose a serious challenge to theories of star and planet formation.Comment: Revised accepted version, ApJL, in pres

    Bispectrum speckle interferometry of the massive protostellar outflow source IRAS 23151+5912

    Full text link
    We present bispectrum speckle interferometry of the massive protostellar object IRAS 23151+5912 in the near-infrared K' band. The reconstructed image shows the diffuse nebulosity north-east of two point-like sources in unprecedented detail. The comparison of our near-infrared image with mm continuum and CO molecular line maps shows that the brighter of the two point sources lies near the center of the mm peak, indicating that it is a high-mass protostar. The nebulosity coincides with the blue-shifted molecular outflow component. The most prominent feature in the nebulosity is a bow-shock-like arc. We assume that this feature is associated with a precessing jet which has created an inward-pointed cone in the swept-up material. We present numerical jet simulations that reproduce this and several other features observed in our speckle image of the nebulosity. Our data also reveal a linear structure connecting the central point source to the extended diffuse nebulosity. This feature may represent the innermost part of a jet that drives the strong molecular outflow (PA ~80 degr) from IRAS 23151+5912. With the aid of radiative transfer calculations, we demonstrate that, in general, the observed inner structures of the circumstellar material surrounding high-mass stars are strongly influenced by the orientation and symmetry of the bipolar cavity.Comment: accepted by Astronomy & Astrophysics; preprints with high-resolution images can be obtained from http://www.mpifr-bonn.mpg.de/staff/tpreibis/iras23151.htm

    Ultraviolet-Selected Field and Pre-Main-Sequence Stars Towards Taurus and Upper Scorpius

    Get PDF
    We have carried out a Galaxy Evolution Explorer (GALEX) Cycle 1 guest investigator program covering 56 square degrees near the Taurus T association and 12 square degrees along the northern edge of the Upper Scorpius OB association. We combined photometry in the GALEX FUV and NUV bands with data from the Two Micron All Sky Survey to identify candidate young (<100 Myr old) stars as those with an ultraviolet excess relative to older main sequence stars. Follow-up spectroscopy of a partial sample of these candidates suggest 5 new members of Taurus, with 8-20 expected from additional observations, and 5 new members of Upper Scorpius, with 3-6 expected from additional observations. These candidate new members appear to represent a distributed, non-clustered population in either region, although our sample statistics are as of yet too poor to constrain the nature or extent of this population. Rather, our study demonstrates the ability of GALEX observations to identify young stellar populations distributed over a wide area of the sky. We also highlight the necessity of a better understanding of the Galactic ultraviolet source population to support similar investigations. In particular, we report a large population of stars with an ultraviolet excess but no optical indicators of stellar activity or accretion, and briefly argue against several interpretations of these sources.Comment: 46 pages, 16 figures, 13 tables; Accepted to the Astronomical Journa
    corecore