48 research outputs found

    A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland

    Get PDF
    The Neoproterozoic Dalradian Supergroup is a dominantly siliciclastic metasedimentary succession in the Caledonian orogenic belt of Scotland and Ireland. Despite polyphase deformation and greenschist- to upper amphibolite-facies metamorphism, carbonate units distributed throughout the Dalradian record marked δ13Ccarbonate excursions that can be linked to those associated with key environmental events of Neoproterozoic time. These include: (1) tentative correlation of the Ballachulish Limestone with the c. 800 Ma Bitter Springs anomaly; (2) the presence of the pre-Marinoan Trezona anomaly and 635 Ma marinoan-equivalent cap carbonat sequence in rocks of the middle Easdale Subgroup; (3) the terminal proterozoic (c. 600-551 Ma)Wonoka-Shuram anomaly in the Girlsta Limestone on Shetland. These linkages strengthen previously inferred correlations of the Stralinchy-Reelan formations and the Inishowen-Loch na Cille-MacDuff ice-rafted debris beds to the respectively 635 Ma Marinoan and 582 Ma Gaskiers glaciations, and suggest that the oldest Dalradian glacial unit, the Port Askaig Formation, represents one of the c. 750-690 Ma Sturtian glacial episodes. These δ13C data and resulting correlations provide more robust constraints on the geological evolution of the Dalradian Supergroup than anything hitherto available and enhance its utility in helping refine understanding of Neoprotrozoic Earth history

    Multiple Palaeoproterozoic carbon burial episodes and excursions

    Get PDF
    Organic-rich rocks (averaging 2–5% total organic carbon) and positive carbonate-carbon isotope excursions (View the MathML source and locally much higher, i.e. the Lomagundi-Jatuli Event) are hallmark features of Palaeoproterozoic successions and are assumed to archive a global event of unique environmental conditions following the c. 2.3 Ga Great Oxidation Event. Here we combine new and published geochronology that shows that the main Palaeoproterozoic carbon burial episodes (CBEs) preserved in Russia, Gabon and Australia were temporally discrete depositional events between c. 2.10 and 1.85 Ga. In northwest Russia we can also show that timing of the termination of the Lomagundi-Jatuli Event may have differed by up to 50 Ma between localities, and that Ni mineralisation occurred at c. 1920 Ma. Further, CBEs have traits in common with Mesozoic Oceanic Anoxic Events (OAEs); both are exceptionally organic-rich relative to encasing strata, associated with contemporaneous igneous activity and marked by organic carbon isotope profiles that exhibit a stepped decrease followed by a stabilisation period and recovery. Although CBE strata are thicker and of greater duration than OAEs (100 s of metres versus metres, ∼106 years versus ∼105 years), their shared characteristics hint at a commonality of cause(s) and feedbacks. This suggests that CBEs represent processes that can be either basin-specific or global in nature and a combination of circumstances that are not unique to the Palaeoproterozoic. Our findings urge circumspection and re-consideration of models that assume CBEs are a Deep Time singularity

    On the Preparation of Some Tertiary Amines Containing the 2-Furfuryl Group. Isomerization of Allyl-aryl( 2-furfuryl)-amines to N-Aryl-4H-5, 7 a-epoxyisoindolines

    Get PDF
    Six new tertiary 2-furfurylamines of the general formula 2-C 4H 30 · CH2 NRAr, w h ere R represents methyl, ethyl or ally!, and Ar phenyl, p-tolyl or p-methoxyphenyl groups, have been prepared by alkylation of the appropriate secondary aryl-(2-furfuryl)- amines with alkyl or ally! halides. It was found that the oily allyl-aryl-(2-furfuryl)-amines, on standing at room temperature, spontaneously isomerized to crystalline N-aryl-4H-5,7a-epoxyisoindolines, formed by a reversible intramolecular Diels-Alder reaction

    The grandest of them all : the Lomagundi-Jatuli Event and Earth's oxygenation

    Get PDF
    Funding: K.K., A.L. and T.K. received funding from Estonian Science Agency Project PRG447 and Yu.D., A.R., D.R. and P.M. were supported by the state assignment of the Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences.The Paleoproterozoic Lomagundi–Jatuli Event (LJE) is generally considered the largest, in both amplitude and duration, positive carbonate C-isotope (δ13Ccarb) excursion in Earth history. Conventional thinking is that it represents a global perturbation of the carbon cycle between 2.3–2.1 Ga linked directly with, and in part causing, the postulated rise in atmospheric oxygen during the Great Oxidation Event. In addition to new high-resolution δ13Ccarb measurements from LJE-bearing successions of NW Russia, we compiled 14 943 δ13Ccarb values obtained from marine carbonate rocks 3.0–1.0 Ga in age and from selected Phanerozoic time intervals as a comparator of the LJE. Those data integrated with sedimentology show that, contra to consensus, the δ13Ccarb trend of the LJE is facies (i.e. palaeoenvironment) dependent. Throughout the LJE interval, the C-isotope composition of open and deeper marine settings maintained a mean δ13Ccarb value of +1.5 ± 2.4‰, comparable to those settings for most of Earth history. In contrast, the 13C-rich values that are the hallmark of the LJE are limited largely to nearshore-marine and coastal-evaporitic settings with mean δ13Ccarb values of +6.2 ± 2.0‰ and +8.1 ± 3.8‰, respectively. Our findings confirm that changes in δ13Ccarb are linked directly to facies changes and archive contemporaneous dissolved inorganic carbon pools having variable C-isotopic compositions in laterally adjacent depositional settings. The implications are that the LJE cannot be construed a priori as representative of the global carbon cycle or a planetary-scale disturbance to that cycle, nor as direct evidence for oxygenation of the ocean–atmosphere system. This requires rethinking models relying on those concepts and framing new ideas in the search for understanding the genesis of the grandest of all positive C-isotope excursions, its timing and its hypothesized linkage to oxygenation of the atmosphere.Publisher PDFPeer reviewe

    Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia

    Get PDF
    The first appearance of skeletal metazoans in the late Ediacaran (~550 million years ago; Ma) has been linked to the widespread development of oxygenated oceanic conditions, but a precise spatial and temporal reconstruction of their evolution has not been resolved. Here we consider the evolution of ocean chemistry from ~550 to ~541. Ma across shelf-to-basin transects in the Zaris and Witputs Sub-Basins of the Nama Group, Namibia. New carbon isotope data capture the final stages of the Shuram/Wonoka deep negative C-isotope excursion, and these are complemented with a reconstruction of water column redox dynamics utilising Fe-S-C systematics and the distribution of skeletal and soft-bodied metazoans. Combined, these inter-basinal datasets provide insight into the potential role of ocean redox chemistry during this pivotal interval of major biological innovation.The strongly negative δ13C values in the lower parts of the sections reflect both a secular, global change in the C-isotopic composition of Ediacaran seawater, as well as the influence of 'local' basinal effects as shown by the most negative δ13C values occurring in the transition from distal to proximal ramp settings. Critical, though, is that the transition to positive δ13C values postdates the appearance of calcified metazoans, indicating that the onset of biomineralization did not occur under post-excursion conditions.Significantly, we find that anoxic and ferruginous deeper water column conditions were prevalent during and after the transition to positive δ13C that marks the end of the Shuram/Wonoka excursion. Thus, if the C isotope trend reflects the transition to global-scale oxygenation in the aftermath of the oxidation of a large-scale, isotopically light organic carbon pool, it was not sufficient to fully oxygenate the deep ocean.Both sub-basins reveal highly dynamic redox structures, where shallow, inner ramp settings experienced transient oxygenation. Anoxic conditions were caused either by episodic upwelling of deeper anoxic waters or higher rates of productivity. These settings supported short-lived and monospecific skeletal metazoan communities. By contrast, microbial (thrombolite) reefs, found in deeper inner- and mid-ramp settings, supported more biodiverse communities with complex ecologies and large skeletal metazoans. These long-lived reef communities, as well as Ediacaran soft-bodied biotas, are found particularly within transgressive systems, where oxygenation was persistent. We suggest that a mid-ramp position enabled physical ventilation mechanisms for shallow water column oxygenation to operate during flooding and transgressive sea-level rise. Our data support a prominent role for oxygen, and for stable oxygenated conditions in particular, in controlling both the distribution and ecology of Ediacaran skeletal metazoan communities

    Petrogenesis and geochemical halos of the amphibolite facies, Lower Proterozoic, Kerry Road volcanogenic massive sulfide deposit, Loch Maree Group, Gairloch, NW Scotland

    Get PDF
    The Palaeoproterozoic Kerry Road deposit is one of the oldest examples of volcanogenic massive sulfide (VMS) mineralization. This small VMS deposit (~500,000 tons grading at 1.2% Cu, 3.5% Zn) is hosted in amphibolite facies mafic-siliciclastic units of the c. 2.0 Ga Loch Maree Group, Scotland. Sulfide mineralization consists of pyrite and pyrrhotite with subordinate chalcopyrite and sphalerite, occurring in disseminated, vein and semi-massive to massive textures. The deposit was highly deformed and metamorphosed during the c. 1.8–1.7 Ga Laxfordian Orogeny. Textural relationships of deformed sulfide minerals, related to early Laxfordian deformation (D1/D2), indicate initial high pressure-low temperature (100 MPa, 150 °C) conditions before reaching peak amphibolite facies metamorphism, as evident from pyrrhotite crossing the brittle/ductile transition prior to chalcopyrite. Late Laxfordian deformation (D3/D4) is marked by local retrograde greenschist facies at low pressure and temperature (<1.2 MPa, <200 °C), recorded by late red sphalerite remobilization. δ34S values from all sulfide minerals have a homogeneous mean of 0.8 ± 0.7‰ (n = 21), consistent with interaction of hydrothermal fluids in the host oceanic basalt-island arc setting envisaged for deposition of the Loch Maree Group. Microprobe analyses of amphiboles record evidence of the original alteration halo associated with the Kerry Road deposit, with a systematic Mg- and Si- enrichment from ferrotschermakite (~150 m) to Mg-hornblende (~90 m) to actinolite (0 m) on approach to the VMS deposit. Furthermore, whole rock geochemistry records a progressive enrichment in Si, Cu, Co, and S, and depletion in Al, Ti, V, Cr, Y and Zr with proximity to the VMS system. These elemental trends, together with amphibole geochemistry, are potentially useful exploration vectors to VMS mineralization in the Loch Maree Group, and in similar highly deformed and metamorphosed terranes elsewhere

    Sedimentology of the early Neoproterozoic Morar Group in northern Scotland : implications for basin models and tectonic setting

    Get PDF
    The metasedimentary rocks of the Morar Group in northern Scotland form part of the early Neoproterozoic Moine Supergroup. The upper part of the Group is c. 2-3 km thick and contains two large km-scale facies successions: a coarsening-upwards marine-to-fluvial regression overlain by a fining-upwards fluvial-to-marine transgression. Fluvial facies make up less than a third of the total thickness; shallow-marine lithofacies comprise the remainder. Combining these new findings with previously published data indicates that the Morar Group represents, overall, a transgressive stratigraphic succession c. 6-9km thick, in which there is both an upward and eastward predominance of shallow-marine deposits, and a concomitant loss of fluvial facies. Smaller-scale (100s of m thick) transgressive-regressive cycles are superimposed on this transgressive trend. Collectively, the characteristics of the succession are consistent with deposition in a foreland basin located adjacent to the Grenville orogen, and possibly linked to the peri-Rodinian ocean. Subsidence and progressive deepening of the Morar basin may have, at least in part, been driven by loading of Grenville-orogeny-emplaced thrust sheets, and aided by sediment loading. However, the relative contributions of thrust loading versus plate boundary effects and/or eustatic sea-level rise on basin evolution remain speculative
    corecore