68 research outputs found

    Methodologies for “Wiring” Redox Proteins/Enzymes to Electrode Surfaces

    Get PDF
    The immobilization of redox proteins or enzymes onto conductive surfaces has application in the analysis of biological processes, the fabrication of biosensors, and in the development of green technologies and biochemical synthetic approaches. This review evaluates the methods through which redox proteins can be attached to electrode surfaces in a “wired” configuration, that is, one that facilitates direct electron transfer. The feasibility of simple electroactive adsorption onto a range of electrode surfaces is illustrated, with a highlight on the recent advances that have been achieved in biotechnological device construction using carbon materials and metal oxides. The covalent crosslinking strategies commonly used for the modification and biofunctionalization of electrode surfaces are also evaluated. Recent innovations in harnessing chemical biology methods for electrically wiring redox biology to surfaces are emphasized

    Development of micro immunosensors to study genomic and proteomic biomarkers related to cancer and Alzheimer\u27s disease

    Get PDF
    A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco

    Molecular Histopathology Using Gold Nanorods and Optical Coherence Tomography

    No full text
    PURPOSE. To examine the novel application of a commercially available optical coherence tomography (OCT) system toward molecular histopathology using gold nanorod (GNR) linked antibodies as a functionalized contrast agent to evaluate ocular surface squamous neoplasia (OSSN). METHODS. GNRs were synthesized and covalently attached to anti–glucose transporter-1 (GLUT-1) antibodies via carbodiimide chemistry. Three specimens from each of three distinct categories of human conjunctival tissue were selected for analysis, including conjunctiva without epithelial atypia (controls); conjunctival intraepithelial neoplasia, carcinoma in situ (CIS); and conjunctival squamous cell carcinoma (SCC). Tissue sections were incubated initially with GNR tagged anti–GLUT-1 antibodies and then with a fluorescent-tagged secondary antibody. Immunofluorescence and OCT imaging of the tissue was performed and the results were correlated to the light microscopic findings on traditional hemotoxyin and eosin stained sections. RESULTS. No binding of the functionalized GNRs was observed within the epithelium of three normal conjunctiva controls. While immunofluorescence disclosed variable binding of the functionalized GNRs to atypical epithelial cells in all six cases of OSSN, the enhancement of the OCT signal in three cases of CIS was insufficient to distinguish these specimens from normal controls. In two of three cases of SCC, binding of functionalized GNRs was sufficient to produce an increased scattering effect on OCT in areas correlating to atypical epithelial cells which stained intensely on immunofluorescence imaging. Binding of functionalized GNRs was sufficient to produce an increased scattering effect on OCT in areas correlating to regions of erythrocytes and hemorrhage which stained intensely on immunofluorescence imaging within all nine tested samples. CONCLUSIONS. We have demonstrated the use of OCT for molecular histopathology using functionalized gold nanorods in the setting of OSSN. Our results suggest a threshold concentration of functionalized GNRs within tissue is required to achieve a detectable enhancement in scattering of the OCT signal

    Single Step Nanoplasmonic Immunoassay for the Measurement of Protein Biomarkers

    No full text
    A nanoplasmonic biosensor for highly-sensitive, single-step detection of protein biomarkers is presented. The principle is based on the utilization of the optical scattering properties of gold nanorods (GNRs) conjugated to bio-recognition molecules. The nanoplasmonic properties of the GNRs were utilized to detect proteins using near-infrared light interferometry. We show that the antibody-conjugated GNRs can specifically bind to our model analyte, Glucose Transporter-1 (Glut-1). The signal intensity of back-scattered light from the GNRs bound after incubation, correlated well to the Glut-1 concentration as per the calibration curve. The detection range using this nanoplasmonic immunoassay ranges from 10 ng/mL to 1 ug/mL for Glut-1. The minimal detectable concentration based on the lowest discernable concentration from zero is 10 ng/mL. This nanoplasmonic immunoassay can act as a simple, selective, sensitive strategy for effective disease diagnosis. It offers advantages such as wide detection range, increased speed of analysis (due to fewer incubation/washing steps), and no label development as compared to traditional immunoassay techniques. Our future goal is to incorporate this detection strategy onto a microfluidic platform to be used as a point-of-care diagnostic tool
    • …
    corecore